

2016 Annual Water Report

1116 Herring Gull Way Parksville, BC V9P 1R2

Phone: 250-248-5412 Fax: 250-248-6140

Table of Contents

1.0	INTRODUCTION	3
2.0	PARKSVILLE WATER SYSTEM	3
3.0	DISTRIBUTION SYSTEM	6
4.0	SCADA	10
5.0	WATER SAMPLING AND TESTING	11
6.0	WATER QUALITY COMPLAINTS & INCIDENTS	12
7.0	ENGLISHMAN RIVER WATER SERVICE JOINT VENTURE AGREEMENT	13
8.0	ROUTINE MAINTENANCE PROGRAM	14
9.0	2016 IMPROVEMENTS	15
10.0	2016 CAPITAL PROJECTS	15
11.0	2017 CAPITAL PROJECTS & IMPROVEMENTS	15
12.0	CROSS CONNECTION	16
13.0	EMERGENCY RESPONSE PLAN	16
14.0	WATERSHED PROTECTION PROGRAM	17
APPI	ENDIX A - WELL LOCATION MAP	
APPI	ENDIX B - ARROWSMITH DAM LAKE LEVELS	
APPI	ENDIX C - MAP OF PRESSURE ZONES	
APPI	ENDIX D - BACTERIOLOGICAL TEST RESULTS	
APPI	ENDIX E - FULL SPECTRUM ANALYSIS	
APPI	ENDIX F - TRIHALOMETHANES (THM) ANALYSIS	
APPI	ENDIX G - WATER SYSTEM OPERATING CONDITIONS	

1.0 Introduction

Water suppliers, under their Operating Permit and conditions, are required to provide an annual report to their users with information such as explanation of water source, water test results, maintenance programs and improvements to the water system. The following document summarizes these requirements. City of Parksville operating conditions are shown in Appendix G.

This report has been submitted to Island Health and it can be found on the City of Parksville Website. www.Parksville.ca.

2.0 Parksville Water System

The City of Parksville has approximately 4,500 water connections serving over 11,000 permanent and seasonal residents as well as supplying water to the Regional District of Nanaimo (Nanoose Bay Peninsula system) in the summer months.

These users get their drinking water from three sources.

- Englishman River
- Springwood Well Field
- Railway Well Field

The water is treated using either liquid or gaseous chlorine and stored in four reservoirs at both ends of the City.

Springwood Well #8

2.1 Groundwater Wells

The City's groundwater is pumped from a confined quadra sands aquifer that runs underground alongside the railway tracks from Trill Drive to the City's boundary in the southwest. The City currently has 16 production wells ranging from 2.0 l/s (25.23 IGPM) to 8.6 l/s (113.5 IGPM). See **Appendix A** for Well locations.

Well Name	Pump intake (m)	Production (l/s)
Springwood Well #1	22.8	2.0
Springwood Well #3	30.36	3.4
Springwood Well #5	30.52	4.8
Springwood Well #6	31.8	2.5
Springwood Well #7	22.35	8.9
Springwood Well #8	23.71	9.3
Springwood Well #9	Under construction	Under construction
Springwood Well #10	32.18	5.1
Springwood Well #11	30.42	5.2
Railway Well#1	35	3.4
Railway Well#2	34.15	4.9
Railway Well#3	38.46	0.7
Railway Well#4	35.67	2.2
Railway Well#5	36	4.7
Railway Well#6	35	5.9
Railway Well#7	35	2.3
Railway Well #8	35.68	3.2
Industrial Well#8	-	-

Pump Depth and Production Information

2.2 River Intake

Between the end of April to the beginning of October the City pumps water from the Englishman River at a maximum rate of 105 l/s (1390 IGPM) to keep up with summer demands. The water in the Englishman river is partially supplied from the Arrowsmith Dam. The Ministry of Environment, Fisheries and the Arrowsmith Water Service (AWS) developed an operating rule curve in an effort to conserve reservoir storage water for critical fisheries rearing periods. A minimum flow is released into the river based on this curve between June 1st and October 31st.

2.3 Arrowsmith Dam

The City of Parksville, the Regional District of Nanaimo, and the Town of Qualicum are partners in the Arrowsmith Water Service (AWS). A concrete gravity dam is located at Arrowsmith Lake approximately 19km south of Parksville. It was commissioned in September of 2000. The dam has a capacity of 9,000,000 m³ and is operated and maintained by City of Parksville staff. Water is released to the Englishman river through two pipes, a 900 mm and a 600 mm with flows and lake levels monitored by the City's Supervisory Control and Data Acquisition (SCADA) system.

See Appendix B for Arrowsmith Dam Lakes Levels 2016.

2.4 Reservoirs

Water that has been pumped either from the ground or from the river is stored in four reservoirs. Reservoirs numbers 1, 2 and 4 are located in the Springwood Water Complex on Despard Road. These three are concrete with two being partially below ground and one above. Storage capacities are:

- Reservoir #1 616 m³ (135,500 Imp. gal).
- Reservoir #2 2023 m³ (445,000 Imp. gal)
- Reservoir #4 4559 m³ (1,000,000 Imp. gal).

There are two additional reservoirs at the Top Bridge Park area, numbers 3 and 5. Reservoir #5 is a glass fused steel tank, Reservoir #3 is a steel tank although currently not in use. Storage capacities are:

- Reservoir #3 671m³ (148,000 Imp. gal.)
- Reservoir #5 4300 m³ (950,000 Imp. gal).

3.0 Distribution System

The distribution system consists of 64.6 km of PVC (plastic) pipe, 9.1 km of Ductile Iron pipe and 33.16 km of AC (Asbestos Cement) pipe. Sizes range from 100mm (4") to 400mm (16"). There are 564 fire hydrants and one Pressure Reducing Valve (PRV).

Like all municipalities, the infrastructure is aging and water mains are being replaced through capital improvements and development. The following shows the size, age and material of the mains in the Parksville Water System in 2015. Some of these pipes have been replaced since 2015 but newer data has not yet been updated by the Engineering department.

2016 Watermain Diameter Proportions							
Diameter No Pipes Distance (km) Percentage Type							
150 mm or less	704	41.9	41.34%	Distribution Mains 66 26%			
200 mm	510	25.3	24.92%				
250 mm	261	15.8	15.56%				
300 mm	200	11	10.89%	Supply Mains 33.74%			
350 mm and greater	109	7.4	7.29%				
Total:	1784	=101.38	km				

2016 Watermain Material Proportions					
Material Types	Distance (km)	Percentage			
Asbestos Cement	27.4	27%			
Ductile Iron	9.1	9%			
PVC	63.6	62.7%			
Steel	0.45	0.5%			
Others	0.84	0.8%			
Total:	101.4	km			

2016 Watermain Age Proportions					
Age	No Pipes	Distance (km)	Percentage		
Under 25 Years (≥1991)	1059	48.5	47.9%		
25 - 50 Years (1966 - 1991)	802	49.6	48.9%		
Over 50 Years (<1966)	62	3.3	3.3%		
Total:	1923	101.4	km		

3.1 Pressure Zones

The City is divided into two pressure zones. A low pressure and a high pressure. The low pressure is a gravity fed system based on the elevation of Reservoir #4 and Reservoir #5. A top water level of 73.74m above sea level (geodetic) gives a range of 55 psi to 85 psi throughout the system, depending on the geographic location.

The high pressure system initially was developed for higher elevation regions of the city that didn't have sufficient pressures or flows to meet fire fighting flows. This high pressure zone has been expanded to areas furthest from the pump stations that lose pressure and flow due to line losses. In order to maintain a balance between high and low pressures but still keep a safe pressure in the lower areas, a PRV was installed to drop the pressure from 80psi to 60psi.

The high pressure water in this zone is supplied from four pumps, a 15 hp, 2-40 hp and a 100 hp. These pumps are controlled through the SCADA system that automatically watches flows and switches on however many pumps it needs to meet the flow requirements.

See Appendix C for Map of Pressure Zone Boundaries.

Springwood Pump Station

4.0 SCADA (Supervisory Control and Data Acquisition)

The water system and sewer pump stations are controlled by a computerized control system called SCADA. This system allows the Operators to monitor reservoir levels, the status and flows of pumps, and monitor chlorine residuals. The operator can change set points and monitor the system remotely. Alarms are automatically called out to City staff that monitors the system 24 hours a day, 7 days a week.

SCADA system

10

5.0 Water Sampling and Testing

5.1 Bacteriological

As required by the Island Health, City staff take weekly bacteriological samples to be tested for Total Coliforms and e-Coli Bacteria. There are 17 dedicated sampling sites throughout the city.

See Appendix D for 2016 test results (L1 means Less than 1 - no detectable bacteria - Acceptable).

5.2 Full Spectrum Analysis

In addition to weekly sampling throughout the distribution system, the City also sends samples from the source waters once per year, in the Fall, for a full spectrum analysis. As seen in Appendix E, parameters such as metals (iron, manganese) conventional parameters (pH, Turbidity, Hardness) and disinfection byproducts (Trihalomethane) are tested.

The source water is aesthetically acceptable as set by the "Guidelines for Canadian Drinking Water Summary Table". Aesthetic qualities apply to certain substances or characteristics such as high Iron content which will stain fixtures red or Manganese which will stain black.

Hardness in the water comes from calcium carbonate (CaCO3). The river water is considered "Soft" under the guidelines and the Well water is "Moderate". Hardness levels above 500 mg/l are normally considered unacceptable.

All parameters meet the Canadian Drinking Water Guidelines.

See **Appendix E** for the 2016 Full Spectrum Analysis of the Parksville Water System Source Water. Note: The water tested is in it's Raw form before any type of treatment.

5.3 Trihalomethane Analyses

The City also take Trihalomethanes (THMs) samples four times per year. THMs are disinfection by-products that form when chlorine is added to water that contains elevated levels of natural organic matter.

See Appendix F for the Trihalomethane results.

1116 Herring Gull Way sampling site

6.0 Water Quality Complaints & Incidents

The Operations Department had few water quality complaints throughout 2016. During water main flushing and fire hydrant maintenance there were a few calls related to "brown or dirty" water. City of Parksville crews would either re-flush the mains through a hydrant or flushout at a location closest to the dead end or advise the homeowner that running an outside tap for a few minutes would clear up the problem.

There was one complaint about the taste of chlorine in the water. Chlorine residuals are tested weekly throughout the system and are kept at a safe level. Besides recommending a filter to remove the chlorine within the home, not much can be done about it.

There were a few hardness related complaints mostly contributed to new homeowners from other municipalities who are used to different water composition. There were also a few calls concerning build up in washing machines and toilet bowl although the water is only considered "Moderately Hard" on the Hardness Scale. This rating drops throughout the summer when the river supply (soft water) is mixed with the well supply.

Many of the complaints in 2016 were related to pressure drop. The cause for most of the pressure drop complaints were from a faulty PRV (responsibility of the home owner). There was the odd occasion where staff had to flush the line in order to clear debris (from construction) or where the setter needed to be replaced.

Many calls were related to water leaks. Most were regarding leaky services or water meters. There were no main breaks in 2016.

Clay Bank at Englishman River

7.0 Englishman River Water Service

The ERWS is a joint venture between the City of Parksville and the Regional District of Nanaimo, formed to secure a bulk water supply from the Englishman River. This regional partnership supplements existing well supply sources owned and operated by the City of Parksville and Nanoose Bay Peninsula Water Service Area.

Englishman River Water Service joint venture agreement (percentages of interest).

- City of Parksville 74%
- Regional District of Nanaimo 26%

ERWS project

The City of Parksville and the Regional District of Nanaimo (Nanoose Bay Peninsula) are moving forward with an expansion to the drinking water supply which will ensure a safe and secure water system for the community. The projects includes:

- In-river water supply intake designed/located to consider the needs of river users and to protect aquatic habitat;
- Water treatment plant with a minimum of 16 million litres per day of membrane filtration capacity to comply with new water regulatory treatment standards; and
- Transmission supply main between plant and reservoirs.

This project is necessary to ensure a safe and secure water system is available for now and the future. Island Health has mandated the improvement of water quality standards for surface water (river water) and the plant is schedule to be operational in 2018.

The benefits of the water treatment plant include:

- Reduced health risk;
- Improved water quality;
- Ensures customers receive best quality water year round; and
- Will meet Canadian Drinking Water Guidelines.

For more information visit www.arrowsmithwaterservice.ca

englishman river WATER SERVICE

8.0 Routine Maintenance Program

8.1 Distribution

- Water mains are flushed using a unidirectional flushing program
- Air relief valves are cleaned
- Fireline meters are cleaned
- Fire Hydrants are completely disassembled and inspected on a two year rotation
- Paint and brush out around hydrants as needed
- All irrigation backflow prevention devices tested and repaired if needed

8.2 Wells

- Daily security check of all wells
- Rehabilitation of 1-2 wells per year
- Pumps and motors replaced as necessary
- Filling chlorine tank on Springwood Well #1 as needed
- Annual water sampling

8.3 River Intake

- Winter maintenance of chlorination system while off line
- Weekly blowing of air lines through intake screens
- Daily checks of pump flows and chlorine levels
- Monthly calibration of turbidity analyzers

8.4 Reservoirs

- Daily security check of tanks and compounds
- Yearly cleaning of Reservoir #1 and 2.
- Clean Reservoir #4 and 5 using divers every 5 years.
- Sustaining valves cleaned monthly

8.5 Pump Stations

- Daily checks of pumps and chlorination system
- Security checks of compounds
- Bi-Annual calibration of chlorine analyzers and turbidimeters

9.0 2016 Projects & Improvements

- Updated the Dam O&M manual and the Dam Emergency Response Plan.
- Springwood well #1 and Railway well #4 were updated (pipes replaced).
- Railways #6 and Springwood #6 had their motor and pump replaced.
- Finished the water meter replacement for the 1 1/2" and the 1". Started the replacement of the 3/4".
- Continued to update the water meter route maps and completed the Arrowsmith Dam Emergency Response Plan.
- Developments that included water main replacement for 823 Stanhope Road, 330 Church Road, 780 Stanhope and 577 Pym.
- Ran the pilot program to demonstrate the UF membrane system performance.

10.0 2016 Capital Projects

- Replacement of aging water mains (Temple Street from Bay to Chinook, Banks Avenue and Forsyth)
- Continued to update the unidirectional flushing maps.

11.0 2017 Projects & Improvements

- Start construction of water intake and treatment plant.
- Rehabilitate Springwood and Railways Wells #6.
- Continuing to replace aging water mains for better distribution (Corfield Street from Highway 19A to Stanford, Wallis and McKinnon.
- Developments that may have substantial completion in 2017 include 770 Hirst Avenue, 511 Soriel Road, Ceder Ridge phase 2 & 3, 705 & 677 Pym Street, Cider Ridge phase 4, Shelly Place and 312 Hirst.
- Continue working on the Cross Connection Control Program.
- Finish updating the unidirectional flushing maps.
- Continue to register all City Wells.
- Railway well #1 well rehabilitation.
- Springwood well #9 chemical rehab.
- Continue with water meter replacement program.

Pilot Plant—UF membrane system

12.0 Cross Connection Control Program

In 2006 the City of Parksville drafted a cross connection control program. Due to shortage of staff, the program was not able to be properly conducted until 2014. The Utilities Technician (Cross Connection Control Coordinator) is constantly working on the implementation of this program.

The Cross Connection program is currently addressing medium and high hazard water use. These include Industrial, Commercial and In-

stitutional (ICI) users. Each ICI user will be assessed as to the potential risk to the water system. Any costs associated with installation, replacement and testing of an approved backflow device will have to be covered by the property owner.

A tracking program called FAST is used to track devices around the City (both City owned and privately owned devices). Property owners are required to send the annual test to the Utilities Technician at the City of Parksville.

All City owned facilities were assessed and the appropriate backflow preventer were installed. Currently staff is assessing privately owned devices. Due to the large number of ICI users, this assessment may take a couple of years. City staff remains watchful of potential cross connections around the City, and problems are reported to the Utilities Technician.

13.0 Emergency Response Plan

The City of Parksville has an Emergency Response Plan (ERP) pertaining to the water system. This document is not available online as it has private contact information for City Staff. This document outlines the strategies to deal with events such as contamination of water supply, pump failures and turbidity events. This plan was updated in 2015 and a separate ERP exists for the Arrowsmith Dam.

Englishman River High Water Level, January 2016

connection

14.0 Watershed Protection Program

The City of Parksville is part of the Regional District of Nanaimo's regional Drinking Water and Watershed Protection Program.

The Drinking Water and Watershed Protection (DWWP) program helps protect the Region's water resources. Through the DWWP program, more is being learned about water in the Region, this information is used to make better land use decisions, and help communities protect the environment.

Parksville is part of the Englishman River watershed. The Englishman River flows in an easterly direction from Mount Arrowsmith at 1819 m above sea level and discharges into the Strait of Georgia, north of Craig Bay. The main Englishman and South Englishman rivers originate in Arrowsmith, Hidden and Fishtail lakes.

The total drainage area is approximately 324 sq. km.

For more information visit http://www.rdn.bc.ca/cms.asp?wpID=1749

Appendix A

Nater Source Locations Map

Appendix B

Prepared By: B. Silenieks

19

Appendix C

Map of Pressure Zone Boundaries

PARKSVILLE, WWS

Facility Location: 1116 Herring Gull Way Parksville

Facility Information: Facility Type: DWT

Facility Sampling History:

Location	<u>Date</u>	<u>Total Coliform</u>	<u>E. Coli</u>
330 Park View, Parksville, 330 Park View, Parksville BC	24-Jan-2017	L1	L1
770 Soriel, 770 Soriel	24-Jan-2017	L1	L1
Island Highway, by Temple, Island Highway, by Temple	24-Jan-2017	L1	L1
136 Memorial, 136 Memorial	17-Jan-2017	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	17-Jan-2017	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	17-Jan-2017	L1	L1
851 TEMPLE (beside), 851 Temple	10-Jan-2017	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	10-Jan-2017	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	10-Jan-2017	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	3-Jan-2017	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	3-Jan-2017	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	3-Jan-2017	L1	L1
Top of Corfield, Parksville , Harbour Homes, Parksville BC	3-Jan-2017	L1	L1
136 Memorial, 136 Memorial	13-Dec-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	13-Dec-2016	L1	L1
770 Soriel, 770 Soriel	13-Dec-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	13-Dec-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	13-Dec-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	13-Dec-2016	L1	L1
River Pump Station, Englishman River Intake	13-Dec-2016	L1	L1
Top of Corfield, Parksville , Harbour Homes, Parksville BC	13-Dec-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	6-Dec-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	6-Dec-2016	L1	L1
851 TEMPLE (beside), 851 Temple	6-Dec-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	6-Dec-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	6-Dec-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	6-Dec-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	6-Dec-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	6-Dec-2016	L1	L1
136 Memorial, 136 Memorial	29-Nov-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	29-Nov-2016	L1	L1
River Pump Station, Englishman River Intake	29-Nov-2016	L1	L1
770 Soriel , 770 Soriel	22-Nov-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	22-Nov-2016	L1	L1

2015 Bacteriological Results

Community Park, Parksville BC, 193 East Island Highway, Parksville BC	22-Nov-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	15-Nov-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	15-Nov-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	15-Nov-2016	L1	L1
851 TEMPLE (beside), 851 Temple	8-Nov-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	8-Nov-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	8-Nov-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	1-Nov-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	1-Nov-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	1-Nov-2016	L1	L1
Top of Corfield, Parksville, Harbour Homes, Parksville BC	1-Nov-2016	L1	L1
136 Memorial, 136 Memorial	25-Oct-2016	L1	L1
770 Soriel, 770 Soriel	25-Oct-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	25-Oct-2016	L1	L1
River Pump Station, Englishman River Intake	25-Oct-2016	4.1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	18-Oct-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	18-Oct-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	18-Oct-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	18-Oct-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	12-Oct-2016	L1	L1
851 TEMPLE (beside), 851 Temple	12-Oct-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	12-Oct-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	12-Oct-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	4-Oct-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	4-Oct-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	4-Oct-2016	L1	L1
Top of Corfield, Parksville , Harbour Homes, Parksville BC	4-Oct-2016	L1	L1
136 Memorial, 136 Memorial	27-Sep-2016	L1	L1
770 Soriel, 770 Soriel	27-Sep-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	27-Sep-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	27-Sep-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	20-Sep-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	20-Sep-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	20-Sep-2016	L1	L1
River Pump Station, Englishman River Intake	20-Sep-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	13-Sep-2016	L1	L1
851 TEMPLE (beside), 851 Temple	13-Sep-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	13-Sep-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	13-Sep-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	7-Sep-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	7-Sep-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	7-Sep-2016	L1	L1
Top of Corfield, Parksville, Harbour Homes, Parksville BC	7-Sep-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	30-Aug-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	30-Aug-2016	L1	L1
136 Memorial, 136 Memorial	23-Aug-2016	L1	L1
770 Soriel 770 Soriel	23-Aug-2016	L1	L1
330 Park View Parksville 330 Park View Parksville BC	16-Aug-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	16-Aug-2016	L1	L1
Daffodil at Camas Parksville Daffodil at Camas Parksville BC	16-Aug-2016	L1	 L1
River Pump Station Englishman River Intake	16-Aug-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	10-Aug-2016	 L1	L1
851 TEMPLE (beside) 851 Temple	10-Aug-2016	L1	L1
Despard & Moilliet 401 S. Moiliet Street Parksville BC	10-Aug-2016	L1	T 1
Wheeler Top of Kingsley 378 Kingsley Street	10-Aug-2016	L1	T 1
Works Vard Parksville, 1300 Herring Gull Way Parksville RC	10-Aug-2016	L1	T 1
WORKS THEST THEST TO THE THE OWN WAY, I WAY TO DO	10 1108-2010		L L L

22

Top of Corfield, Parksville , Harbour Homes, Parksville BC	3-Aug-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	2-Aug-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	2-Aug-2016	48	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville	BC 2-Aug-2016	L1	L1
136 Memorial, 136 Memorial	26-Jul-2016	L1	L1
770 Soriel 770 Soriel	26-Jul-2016	L1	L1
Community Park Parksville BC 193 East Island Highway Parksville BC	26-Jul-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	26-Jul-2016	L1	L1
330 Park View Parkeville 330 Park View Parkeville BC	19-Jul-2016	1 I	1 I
across from 450 Wisteria 450 Wisteria	19-Jul-2016	1 I	L1 11
Daffodil at Camas Parksville Daffodil at Camas Parksville BC	19-Jul-2016	T1	
River Pump Station Englishman River Intake	19-Jul-2016	T 1	1 I
271 Chestnut Street Darkeville 271 Chestnut Street Darkeville BC	13-Jul-2016	T 1	I 1
271 Chestilut Street, Faiksville, 271 Chestilut Street, Faiksville DC	13 Jul 2016	L1 I1	T 1
Wheeler Ten of Kingday 270 Kingday Street	13-Jul-2010	LI I 1	L1
Wieler, Top of Kingsley, 578 Kingsley Sileet	13-Jul-2010	LI T 1	LI
612 Chirage Assessed Barbarilla 612 Chirage Assessed Barbarilla DC	13-Jul-2010	LI T 1	LI
Demond & Meillist 401 S. Meilist Street Deducille DC	6 Jul-2016		LI
Despard & Molliet, 401 S. Molliet Street, Parksville BC	0-Jul-2010		LI
Parksville MHP/Utility Building, Parksville, 124/ Arbutus Road, Parksville	BC 6-Jul-2016		LI
lop of Corfield, Parksville, Harbour Homes, Parksville BC	6-Jul-2016	LI	LI
136 Memorial, 136 Memorial	28-Jun-2016	LI	LI
//0 Soriel , //0 Soriel	28-Jun-2016	L1	LI
Island Highway, by Temple, Island Highway, by Temple	28-Jun-2016	L1	L1
River Pump Station, Englishman River Intake	28-Jun-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	21-Jun-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	21-Jun-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	21-Jun-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	21-Jun-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	15-Jun-2016	L1	L1
851 TEMPLE (beside), 851 Temple	15-Jun-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	15-Jun-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	15-Jun-2016	L1	L1
613 Chinook Avenue, Parksville , 613 Chinook Avenue, Parksville BC	8-Jun-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	8-Jun-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville	BC 8-Jun-2016	L1	L1
Top of Corfield, Parksville , Harbour Homes, Parksville BC	8-Jun-2016	L1	L1
136 Memorial, 136 Memorial	31-May-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	31-May-2016	L1	L1
770 Soriel, 770 Soriel	25-May-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	25-May-2016	L1	L1
851 TEMPLE (beside), 851 Temple	18-May-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	18-May-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville	BC 18-May-2016	L1	L1
Top of Corfield, Parksville, Harbour Homes, Parksville BC	18-May-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	9-May-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	9-May-2016	L1	L1
River Pump Station, Englishman River Intake	9-May-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	9-May-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	4-May-2016	L1	L1
330 Park View Parksville 330 Park View Parksville BC	4-May-2016	L1	L1
Community Park Parksville BC 193 East Island Highway Parksville BC	4-May-2016	L1	 L1
613 Chinook Avenue Parksville 613 Chinook Avenue Parksville BC	3-May-2016	L.1	T 1
136 Memorial 136 Memorial	26-Apr-2016	L.1	L1
271 Chestnut Street Parksville 271 Chestnut Street Parksville BC	26-Apr-2016	T 1	T 1
770 Soriel 770 Soriel	26-Apr-2016	T 1	T 1
2015 Dactoriologica	Doculto	21	

Island Highway, by Temple, Island Highway, by Temple	26-Apr-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	19-Apr-2016	L1	L1
851 TEMPLE (beside), 851 Temple	19-Apr-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	19-Apr-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	19-Apr-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	11-Apr-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	11-Apr-2016	L1	L1
River Pump Station, Englishman River Intake	11-Apr-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	11-Apr-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	5-Apr-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	5-Apr-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	5-Apr-2016	L1	L1
Top of Corfield, Parksville , Harbour Homes, Parksville BC	5-Apr-2016	L1	L1
136 Memorial, 136 Memorial	30-Mar-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	30-Mar-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	22-Mar-2016	L1	L1
770 Soriel, 770 Soriel	22-Mar-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	15-Mar-2016	L1	L1
851 TEMPLE (beside), 851 Temple	15-Mar-2016	L1	L1
River Pump Station, Englishman River Intake	15-Mar-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	15-Mar-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	8-Mar-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	8-Mar-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	8-Mar-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	8-Mar-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	2-Mar-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	2-Mar-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	2-Mar-2016	L1	L1
Top of Corfield, Parksville, Harbour Homes, Parksville BC	2-Mar-2016	L1	L1
136 Memorial, 136 Memorial	24-Feb-2016	L1	L1
271 Chestnut Street, Parksville, 271 Chestnut Street, Parksville BC	24-Feb-2016	L1	L1
Island Highway, by Temple, Island Highway, by Temple	24-Feb-2016	L1	L1
Wheeler, Top of Kingsley, 378 Kingsley Street	24-Feb-2016	L1	L1
330 Park View, Parksville, 330 Park View, Parksville BC	16-Feb-2016	L1	L1
770 Soriel, 770 Soriel	16-Feb-2016	L1	L1
851 TEMPLE (beside), 851 Temple	16-Feb-2016	L1	L1
River Pump Station, Englishman River Intake	16-Feb-2016	L1	L1
across from 450 Wisteria, 450 Wisteria	9-Feb-2016	L1	L1
Community Park, Parksville BC, 193 East Island Highway, Parksville BC	9-Feb-2016	L1	L1
Daffodil at Camas, Parksville, Daffodil at Camas, Parksville BC	9-Feb-2016	L1	L1
Works Yard, Parksville, 1390 Herring Gull Way, Parksville BC	9-Feb-2016	L1	L1
613 Chinook Avenue, Parksville, 613 Chinook Avenue, Parksville BC	2-Feb-2016	L1	L1
Despard & Moilliet, 401 S. Moiliet Street, Parksville BC	2-Feb-2016	L1	L1
Parksville MHP/Utility Building, Parksville, 1247 Arbutus Road, Parksville BC	2-Feb-2016	L1	L1
Top of Corfield, Parksville , Harbour Homes, Parksville BC	2-Feb-2016	L1	L1

2015 Bacteriological Results

26-Jan-2016	L1	L1
26-Jan-2016	L1	L1
26-Jan-2016	L1	L1
26-Jan-2016	L1	L1
20-Jan-2016	L1	L1
12-Jan-2016	L1	L1
5-Jan-2016	L1	L1
	26-Jan-2016 26-Jan-2016 26-Jan-2016 20-Jan-2016 20-Jan-2016 20-Jan-2016 20-Jan-2016 12-Jan-2016 12-Jan-2016 12-Jan-2016 5-Jan-2016 5-Jan-2016 5-Jan-2016 5-Jan-2016	26-Jan-2016 L1 26-Jan-2016 L1 26-Jan-2016 L1 26-Jan-2016 L1 20-Jan-2016 L1 20-Jan-2016 L1 20-Jan-2016 L1 20-Jan-2016 L1 20-Jan-2016 L1 12-Jan-2016 L1 12-Jan-2016 L1 12-Jan-2016 L1 5-Jan-2016 L1

Information taken from: http://www.viha.ca/mho/water/water_sampling_results.htm

2015 Bacteriological Results

CERTIFICATE OF ANALYSIS

REPORTED TO	Parksville, City of P O Box 1390, 100 Jensen Avenue East Parksville, BC V9P 2H3	TEL FAX	(250) 951-2489
ATTENTION	Barbara Silenieks	WORK ORDER	6110030
PO NUMBER PROJECT PROJECT INFO	PO002303 Drinking Water Pkg	RECEIVED / TEMP REPORTED COC NUMBER	2016-11-01 09:30 / 7°C 2016-11-08 B35456

General Comments:

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

SILL

Authorized By:

Division Manager, Richmond

Brent Coates, B.Sc.

If you have any questions or concerns, please contact your Account Manager: Jeffery Lopes (jlopes@caro.ca)

Locations:

#110 4011 Viking Way Richmond, BC V6V 2K9 Tel: 604-279-1499 Fax: 604-279-1599 #102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646 Fax: 250-765-3893 www.caro.ca 17225 109 Avenue Edmonton, AB T5S 1H7 Tel: 780-489-9100 Fax: 780-489-9700

CARO Analytical Services Rev 2016-06-24

Page 1 of 14

⁻ull Spectrum Analysis—Well Wate

ANALYSIS INFORMATION

Analysis Description Method Reference Technique Location Alkalinity in Water APHA 2320 B* Titration with H2SO4 Kelowna Ammonia, Total in Water APHA 4500-NH3 G* Automated Colorimetry (Phenate) Kelowna Anions by IC in Water APHA 410 B Ion Chromatography with Chemical Suppression of Kelowna Coliforms, Fecal (MF) in Water APHA 9222 Membrane Filtration Sublet Coliforms, Total (MF) in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Coductivity in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Langelier Index in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Hardness (as CaCO3) in Water APHA 2330 B Calculation / Cold Vapor Atomic Fluorescence Richmond Langelier Index in Water APHA 2330 B Calculation: 100 x ([Cations]-[Anions]) N/A Mercury, total by CVAFS in Water EPA 245.7* Br	REPORTED TO PROJECT	Parksville, City Drinking Water	of Pkg	WORK ORDER REPORTED	6110030 2016-11-08
Alkalinity in Water APHA 2320 B* Titration with H2SO4 Kelowna Ammonia, Total in Water APHA 4500-NH3 G* Automated Colorimetry (Phenate) Kelowna Anions by IC in Water APHA 4110 B Ion Chromatography with Chemical Suppression of Eluent Conductivity Kelowna Coliforms, Fecal (MF) in Water APHA 9222 Membrane Filtration Sublet Coliforms, Total (MF) in Water APHA 9222 Membrane Filtration Sublet Coliforms, Total (MF) in Water APHA 9222 Membrane Filtration Sublet Colour, True in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet E. coli (MF) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Hardness (as CaCO3) in Water APHA 2330 B Calculation / Cold Vapor Atomic Fluorescence Richmond Langelier Index in Water APHA 2300 B Calculation / Cold Vapor Atomic Fluorescence Richmond Juarter APHA 2500-H+ B Electrometry Celoutation* [Cations]/[Anions])/ N/A	Analysis Descri	ption	Method Reference	Technique	Location
Ammonia, Total in Water APHA 4500-NH3 G* Automated Colorimetry (Phenate) Kelowna Anions by IC in Water APHA 4110 B Ion Chromatography with Chemical Suppression of Eluent Conductivity Kelowna Coliforms, Fecal (MF) in Water APHA 9222 Membrane Filtration Sublet Coliforms, Total (MF) in Water APHA 9222 Membrane Filtration Sublet Color, True in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Conductivity in Water APHA 9223 B Conductivity Meter Kelowna Cyanide, SAD in Water APHA 9223 B Conductivity Meter Kelowna E. coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2300 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Cxidation / Cold Vapor Atomic Fluorescence Richmond Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A Te	Alkalinity in Water		APHA 2320 B*	Titration with H2SO4	Kelowna
Anions by IC in Water APHA 4110 B Ion Chromatography with Chemical Suppression of Eluent Conductivity Coliforms, Fecal (MF) in Water APHA 9222 Membrane Filtration Sublet Coliforms, Total (MF) in Water APHA 9222 Membrane Filtration Sublet Color, True in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water APHA 9223 B Conductivity Meter Kelowna Cyanide, SAD in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet E. coli (MF) in Water APHA 9230 B Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Hardness (as CaCO3) in Water APHA 2340 B* Calculation N/A Langelier Index in Water APHA 4230 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 30030E* / APHA HNO3+HCl Hot	Ammonia, Total in	Water	APHA 4500-NH3 G*	Automated Colorimetry (Phenate)	Kelowna
Coliforms, Fecal (MF) in Water APHA 9222 Membrane Filtration Sublet Coliforms, Total (MF) in Water APHA 9222 Membrane Filtration Sublet Colour, True in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water ASTM D7511-12 Flow Injection Analysis with In-Line Ultraviolet Kelowna E. coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond Spectrometry (CVAFS) PH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 2550 B Thermometer	Anions by IC in Wa	ater	APHA 4110 B	Ion Chromatography with Chemical Suppression of Eluent Conductivity	Kelowna
Coliforms, Total (MF) in Water APHA 9222 Membrane Filtration Sublet Colour, True in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water ASTM D7511-12 Flow Injection Analysis with In-Line Ultraviolet Kelowna Digestion and Amperometric Detection E. coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 2550 B Thermometer Kelowna Turbidity in Water APHA 2130 B Plasma Mass Spectrometry (ICP-MS) Richmond Turbidity in Water APHA 2130 B NPHA MO3+HCI Hot Block Digestion / Inductively Coupled Richmond </td <td>Coliforms, Fecal (M</td> <td>MF) in Water</td> <td>APHA 9222</td> <td>Membrane Filtration</td> <td>Sublet</td>	Coliforms, Fecal (M	MF) in Water	APHA 9222	Membrane Filtration	Sublet
Colour, True in Water APHA 2120 C Spectrophotometry (456 nm) Kelowna Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water ASTM D7511-12 Flow Injection Analysis with In-Line Ultraviolet Kelowna Digestion and Amperometric Detection E. Coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation: 0.407 [total Ca] + 4.118 [total Mg] N/A Mercury, total by CVAFS in Water EPA 245.7* BCI2 Oxidation / Cold Vapor Atomic Fluorescence Richmond pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A ([Cations]+[Anions]) Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 2130 B Plasma Mass Spectrometry (ICP-MS) Turbidity in Water APHA 2130 B Nephelometry	Coliforms, Total (M	IF) in Water	APHA 9222	Membrane Filtration	Sublet
Conductivity in Water APHA 2510 B Conductivity Meter Kelowna Cyanide, SAD in Water ASTM D7511-12 Flow Injection Analysis with In-Line Ultraviolet Kelowna Digestion and Amperometric Detection Digestion and Amperometric Detection Kelowna E. coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation: 0.2497 [total Ca] + 4.118 [total Mg] N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Turbidity in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Kelowna Richmond Stelamage	Colour, True in Wa	ter	APHA 2120 C	Spectrophotometry (456 nm)	Kelowna
Cyanide, SAD in Water ASTM D7511-12 Flow Injection Analysis with In-Line Ultraviolet Kelowna Digestion and Amperometric Detection Digestion and Amperometric Detection Sublet E. coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Kelowna Turbidity in Water APHA 2130 B Nephelometry Kelowna	Conductivity in Wa	ter	APHA 2510 B	Conductivity Meter	Kelowna
E. coli (MF) in Water APHA 9223 B Enzyme Substrate Endo Agar Sublet Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Mercury, total by CVAFS in Water APHA 2330 B Calculation Cold Vapor Atomic Fluorescence Richmond Spectrometry (total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond Spectrometry (total by CVAFS in Water APHA 4500-H+ B Electrometry (CVAFS) Kelowna pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCl Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Turbidity in Water APHA 2130 B Nephelometry Kelowna	Cyanide, SAD in V	Vater	ASTM D7511-12	Flow Injection Analysis with In-Line Ultraviolet Digestion and Amperometric Detection	Kelowna
Hardness (as CaCO3) in Water APHA 2340 B* Calculation: 2.497 [total Ca] + 4.118 [total Mg] N/A Langelier Index in Water APHA 2330 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Richmond pH in Water APHA 4500-H+ B Electrometry (CVAFS) Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 2130 B Plasma Mass Spectrometry (ICP-MS) Richmond Turbidity in Water APHA 2130 B Nephelometry Kelowna	E. coli (MF) in Wat	er	APHA 9223 B	Enzyme Substrate Endo Agar	Sublet
Langelier Index in Water APHA 2330 B Calculation N/A Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS) Richmond Spectrometry (CVAFS) pH in Water APHA 4500-H+ B Electrometry (CVAFS) Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled 3125 B Plasma Mass Spectrometry (ICP-MS) Turbidity in Water APHA 2130 B Nephelometry Kelowna	Hardness (as CaC	O3) in Water	APHA 2340 B*	Calculation: 2.497 [total Ca] + 4.118 [total Mg] (Estimated)	N/A
Mercury, total by CVAFS in Water EPA 245.7* BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS) Richmond pH in Water APHA 4500-H+ B Electrometry (CVAFS) Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ ([Cations]+[Anions]) N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Kelowna Turbidity in Water APHA 2130 B Nephelometry Kelowna	Langelier Index in	Water	APHA 2330 B	Calculation	N/A
pH in Water APHA 4500-H+ B Electrometry Kelowna Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ ([Cations]+[Anions]) N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Kelowna Turbidity in Water APHA 2130 B Nephelometry Kelowna	Mercury, total by C	VAFS in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	Richmond
Solids, Total Dissolved in Water APHA 1030 E Calculation: 100 x ([Cations]-[Anions])/ ([Cations]+[Anions]) N/A Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled 3125 B Richmond Plasma Mass Spectrometry (ICP-MS) Turbidity in Water APHA 2130 B Nephelometry Kelowna	pH in Water		APHA 4500-H+ B	Electrometry	Kelowna
Temperature (lab) in Water APHA 2550 B Thermometer Kelowna Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Kelowna Turbidity in Water APHA 2130 B Nephelometry Kelowna	Solids, Total Disso	lved in Water	APHA 1030 E	Calculation: 100 x ([Cations]-[Anions])/ ([Cations]+[Anions])	N/A
Total Metals by ICPMS in Water APHA 3030E* / APHA HNO3+HCI Hot Block Digestion / Inductively Coupled Richmond 3125 B Plasma Mass Spectrometry (ICP-MS) Kelowna Turbidity in Water APHA 2130 B Nephelometry Kelowna	Temperature (lab)	in Water	APHA 2550 B	Thermometer	Kelowna
Turbidity in Water APHA 2130 B Nephelometry Kelowna	Total Metals by ICF	PMS in Water	APHA 3030E* / APHA 3125 B	HNO3+HCI Hot Block Digestion / Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	Richmond
	Turbidity in Water		APHA 2130 B	Nephelometry	Kelowna

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Method Reference Descriptions:

APHA	Standard Methods for the Examination of Water and Wastewater, 22nd Edition, American Public Health
	Association/American Water Works Association/Water Environment Federation
ASTM	ASTM International Test Methods
EPA	United States Environmental Protection Agency Test Methods

Glossary of Terms:

MRL <	Method Reporting Limit Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to various factors such as dilutions, limited sample volume, high moisture, or interferences
°C	Degrees Celcius
CFU/100 mL	Colony Forming Units per 100 millilitres
CU	Colour Units (referenced against a platinum cobalt standard)
mg/L	Milligrams per litre
NTU	Nephelometric Turbidity Units
pH units	pH < 7 = acidic, ph > 7 = basic
µS/cm	Microsiemens per centimetre

CARO Analytical Services Rev 2016-06-24

Page 2 of 14

ull Spectrum Analysis—Well Wate

SAMPLE ANALYTICAL DATA

REPORTED TO Parksville, City of PROJECT Drinking Water Pkg	1				WORK	ORDER	6110030 2016-11-08
Analyte	Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: River (6110030-01) [Water] Sampled: 20	16-10-31 00:00	To 2016-10	-31 08:45			
Anions							
Chloride	3.82	N/A	0.10	mg/L	N/A	2016-11-03	
Fluoride	< 0.10	N/A	0.10	mg/L	N/A	2016-11-03	
Nitrate (as N)	0.043	N/A	0.010	mg/L	N/A	2016-11-03	
Nitrite (as N)	< 0.010	N/A	0.010	mg/L	N/A	2016-11-03	
Sulfate	1.4	N/A	1.0	mg/L	N/A	2016-11-03	
General Parameters							
Alkalinity, Total (as CaCO3)	16	N/A	2	ma/L	N/A	2016-11-03	
Alkalinity, Phenolohthalein (as CaCO3)	< 1	N/A	2	ma/L	N/A	2016-11-03	
Alkalinity, Bicarbonate (as CaCO3)	16	N/A	2	ma/L	N/A	2016-11-03	
Alkalinity, Carbonate (as CaCO3)	< 1	N/A	2	ma/L	N/A	2016-11-03	
Alkalinity, Hydroxide (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Colour. True	26	N/A	5	CU	N/A	2016-11-07	HT1
Conductivity (EC)	51	N/A	2	µS/cm	N/A	2016-11-03	
Cvanide, Total	< 0.0020	N/A	0.0020	mg/L	N/A	2016-11-03	
pH	7.11	N/A	0.01	pH units	N/A	2016-11-03	HT2
Temperature	20	N/A		°C	N/A	2016-11-03	HT2
Turbidity	1.19	N/A	0.10	NTU	N/A	2016-11-03	
Calculated Parameters							
Hardness, Total (as CaCO3)	19.6	N/A	4,99	ma/L	N/A	N/A	
Langelier Index	-2.4	N/A	-5.0	-	N/A	2016-11-08	
Solids, Total Dissolved	24.5	N/A	2.00	mg/L	N/A	N/A	
Total Metals							
Aluminum, total	0.127	N/A	0.005	ma/L	2016-11-03	2016-11-03	
Antimony, total	< 0.0010	N/A	0.0001	ma/L	2016-11-03	2016-11-03	
Arsenic total	< 0.0050	N/A	0.0005	ma/l	2016-11-03	2016-11-03	
Barium, total	< 0.050	N/A	0.005	ma/L	2016-11-03	2016-11-03	
Boron, total	< 0.040	N/A	0.004	ma/L	2016-11-03	2016-11-03	
Cadmium, total	< 0.00010	N/A	0.00001	ma/L	2016-11-03	2016-11-03	
Calcium, total	6.2	N/A	0.2	mg/L	2016-11-03	2016-11-03	
Chromium, total	< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	
Cobalt, total	< 0.00050	N/A	0.00005	mg/L	2016-11-03	2016-11-03	
Copper, total	< 0.0020	N/A	0.0002	ma/L	2016-11-03	2016-11-03	
Iron, total	0.15	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Lead, total	< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Magnesium, total	0.98	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Manganese, total	0.0053	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Mercury, total	< 0.00002	N/A	0.00002	mg/L	2016-11-02	2016-11-03	
Molybdenum, total	< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Nickel, total	< 0.0020	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Potassium, total	< 0.20	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Selenium, total	< 0.0050	N/A	0.0005	ma/L	2016-11-03	2016-11-03	
Sodium, total	2.10	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Uranium, total	< 0.00020	N/A	0.00002	mg/L	2016-11-03	2016-11-03	
Zinc, total	< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	

CARO Analytical Services Rev 2016-06-24

Page 3 of 14

SAMPLE ANALYTICAL DATA

REPORTED TO Parksville, City of PROJECT Drinking Water Pk	g				WORK	6110030 2016-11-08	
Analyte	Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: River (6110030-01) [Wate	r] Sampled: 20	16-10-31 00:00 1	To 2016-10	-31 08:45, Cor	ntinued		
Microbiological Parameters							
Coliforms, Total	64	N/A	1	CFU/100 mL		2016-11-01	
Coliforms, Fecal	32	N/A	1	CFU/100 mL		2016-11-01	
E. coli	34	N/A	1	CFU/100 mL		2016-11-01	
Sample ID: Springwood Well #6 (611)	0030-02) [Water] Sampled: 201	6-10-31 09	:15			
Anions							
Chloride	14.8	N/A	0.10	mg/L	N/A	2016-11-03	
Fluoride	< 0.10	N/A	0.10	mg/L	N/A	2016-11-03	
Nitrate (as N)	1.21	N/A	0.010	mg/L	N/A	2016-11-03	
Nitrite (as N)	< 0.010	N/A	0.010	mg/L	N/A	2016-11-03	
Sulfate	6.5	N/A	1.0	mg/L	N/A	2016-11-03	
General Parameters							
Alkalinity, Total (as CaCO3)	132	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Phenolphthalein (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Bicarbonate (as CaCO3)	132	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Carbonate (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Hydroxide (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Colour, True	< 5	N/A	5	CU	N/A	2016-11-07	HT1
Conductivity (EC)	319	N/A	2	µS/cm	N/A	2016-11-03	
Cyanide, Total	< 0.0020	N/A	0.0020	mg/L	N/A	2016-11-03	
H	7.51	N/A	0.01	pH units	N/A	2016-11-03	HT2
Temperature	21	N/A		°C	N/A	2016-11-03	HT2
Turbidity	1.08	N/A	0.10	NTU	N/A	2016-11-03	
Calculated Parameters							
Hardness, Total (as CaCO3)	159	N/A	4.99	mg/L	N/A	N/A	
Langelier Index	-0.3	N/A	-5.0	-	N/A	2016-11-08	
Solids, Total Dissolved	168	N/A	2.00	mg/L	N/A	N/A	
Total Metals				-			
Aluminum, total	< 0.050	N/A	0.005	ma/L	2016-11-03	2016-11-03	
Antimony, total	< 0.0010	N/A	0.0001	ma/L	2016-11-03	2016-11-03	
Arsenic, total	< 0.0050	N/A	0.0005	ma/L	2016-11-03	2016-11-03	
Barium, total	< 0.050	N/A	0.005	mg/L	2016-11-03	2016-11-03	
Boron, total	< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	
Cadmium, total	< 0.00010	N/A	0.00001	mg/L	2016-11-03	2016-11-03	
Calcium, total	34.9	N/A	0.2	mg/L	2016-11-03	2016-11-03	
Chromium, total	< 0.0050	N/A	0.0005	ma/L	2016-11-03	2016-11-03	
Cobalt, total	< 0.00050	N/A	0.00005	mg/L	2016-11-03	2016-11-03	
Copper, total	0.0073	N/A	0.0002	ma/L	2016-11-03	2016-11-03	
ron, total	0.21	N/A	0.01	mg/L	2016-11-03	2016-11-03	
ead, total	0.0028	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Magnesium, total	17.4	N/A	0.01	ma/L	2016-11-03	2016-11-03	
Manganese, total	0.0313	N/A	0.0002	ma/L	2016-11-03	2016-11-03	
Marguns talal	< 0.00002	N/A	0.00002	mal	2016-11-02	2016-11-02	

CARO Analytical Services Rev 2016-06-24

Page 4 of 14

SAMPLE ANALYTICAL DATA

REPORTED TO Park PROJECT Drin	ksville, City of king Water Pkg					WORK REPO	ORDER RTED	6110030 2016-11-08
Analyte		Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Springwood	Well #6 (611003	0-02) [Water] Sampled: 201	6-10-31 09	:15, Continue	d		
Total Metals, Continued								
Molybdenum, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	1
Nickel, total		< 0.0020	N/A	0.0002	mg/L	2016-11-03	2016-11-03)
Potassium, total		0.86	N/A	0.02	mg/L	2016-11-03	2016-11-03	1
Selenium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03)
Sodium, total		7.48	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Uranium, total		0.00022	N/A	0.00002	mg/L	2016-11-03	2016-11-03)
Zinc, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03)
Microbiological Parameter	s							
Coliforms, Total		<1	N/A	1	CFU/100 mL		2016-11-01	
Coliforms, Fecal		<1	N/A	1	CFU/100 mL		2016-11-01	
E. coli		<1	N/A	1	CFU/100 mL		2016-11-01	
Anions Chloride		49.3	N/A	0.10	ma/l	N/A	2016-11-03	
Chionde		18.3	N/A	0.10	mg/L	N/A	2016-11-03	•
Fluonde		< 0.10	N/A	0.10	mg/L	N/A	2016-11-03	
Nitrate (as N)		1.48	N/A	0.010	mg/L	N/A	2016-11-03	
Nitrite (as N)		< 0.010	N/A	0.010	mg/L	N/A	2016-11-03	
Sullate		1.0	DUA.	1.0	ing/L	19/0	2010-11-03	,
General Parameters				-	-			
Alkalinity, Total (as CaCO3)		189	N/A	2	mg/L	N/A	2016-11-03	}
Alkalinity, Phenolphthalein	(as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Bicarbonate (as (CaCO3)	189	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Carbonate (as Ca	aCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03)
Alkalinity, Hydroxide (as Ca	iCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Colour, True		< 5	N/A	5	00	NVA	2016-11-07	нп
Conductivity (EC)		42/	N/A	0.0020	ps/cm	N/A	2016-11-03)
cyanide, iotai		< 0.0020	NIA	0.0020	nig/L	N/A	2010-11-03	
pn Temperature		7.03	N/A	0.01	Pri units	N/A	2016-11-03	
Turbidity		0.19	N/A	0.10	NTU	N/A	2016-11-03	
Calculated Parameters		0.10						
Hardness, Total (as CaCO3	80	197	N/A	4,99	ma/L	N/A	N/A	
Langelier Index	-	0.08	N/A	-5.0	-	N/A	2016-11-08	}
Solids, Total Dissolved		234	N/A	2.00	mg/L	N/A	N/A	·
Total Metals								
Aluminum, total		< 0.050	N/A	0.005	mg/L	2016-11-03	2016-11-03	1
Antimony, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	}
Arsenic, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03)
Barium, total		< 0.050	N/A	0.005	mg/L	2016-11-03	2016-11-03	}
Boron, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	
Cadmium, total		< 0.00010	N/A	0.00001	mail	2016-11-03	2016-11-03	1

CARO Analytical Services Rev 2016-06-24

Page 5 of 14

Full Spectrum Analysis—Well Wate

SAMPLE ANALYTICAL DATA

REPORTED TO Parksville, City of PROJECT Drinking Water Pkg						WORK	6110030 2016-11-08	
Analyte		Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Springwoo	od Well #5 (611003	0-03) [Water]	Sampled: 201	6-10-31 09	:30, Continue	d		
Total Metals, Continued	1							
Calcium, total		43.5	N/A	0.2	mg/L	2016-11-03	2016-11-03	
Chromium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	
Cobalt, total		< 0.00050	N/A	0.00005	mg/L	2016-11-03	2016-11-03	
Copper, total		0.0337	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Iron, total		0.11	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Lead, total		0.0021	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Magnesium, total		21.5	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Manganese, total		0.0296	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Mercury, total		< 0.00002	N/A	0.00002	mg/L	2016-11-02	2016-11-03	
Molybdenum, total		0.0012	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Nickel, total		0.0024	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Potassium, total		1.02	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Selenium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	
Sodium, total		19.2	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Uranium, total		0.00026	N/A	0.00002	ma/L	2016-11-03	2016-11-03	
Zinc, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	
Microbiological Parame	ters							
Coliforms, Total		<1	N/A	1	CFU/100 mL		2016-11-01	
Coliforms, Fecal		<1	N/A	1	CFU/100 mL		2016-11-01	
E. coli		<1	N/A	1	CFU/100 mL		2016-11-01	
Sample ID: Railway W	ell #5 (6110030-04) [Water] Sa	mpled: 2016-10	-31 09:45				
Anions				0.40			2016 11 02	
Anions Chloride		24.1	N/A	0.10	mg/L	N/A	2016-11-03	
Anions Chloride Fluoride		24.1 < 0.10	N/A N/A	0.10	mg/L mg/L	N/A N/A	2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N)		24.1 < 0.10 0.611	N/A N/A N/A	0.10 0.10 0.010	mg/L mg/L mg/L	N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N)		24.1 < 0.10 0.611 < 0.010	N/A N/A N/A N/A	0.10 0.10 0.010 0.010	mg/L mg/L mg/L	N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate		24.1 < 0.10 0.611 < 0.010 4.1	N/A N/A N/A N/A N/A	0.10 0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L	N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters		24.1 < 0.10 0.611 < 0.010 4.1	N/A N/A N/A N/A N/A	0.10 0.010 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC)3)	24.1 < 0.10 0.611 < 0.010 4.1	N/A N/A N/A N/A N/A	0.10 0.010 0.010 0.010 1.0 2	mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Phenolphthale	D3) in (as CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1	N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Bicarbonate (a	D3) in (as CaCO3) is CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1	N/A N/A N/A N/A N/A N/A	0.10 0.10 0.010 1.0 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Sulfate General Parameters Alkalinity, Total (as CaC0 Alkalinity, Phenolphthale Alkalinity, Bicarbonate (a Alkalinity, Carbonate (as	D3) in (as CaCO3) is CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1	N/A N/A N/A N/A N/A N/A N/A	0.10 0.10 0.010 1.0 2 2 2 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Discarbonate (a Alkalinity, Carbonate (as Alkalinity, Hydroxide (as	03) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 < 1	N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.10 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	
Anions Chloride Fluoride Nitrate (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Phenolphthale Alkalinity, Carbonate (as Alkalinity, Hydroxide (as Colour, True	03) in (as CaCO3) is CaCO3) CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 < 1 < 1 < 5	N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 5	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	НТ1
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Thenolphthale Alkalinity, Bicarbonate (as Alkalinity, Hydroxide (as Colour, True Conductivity (EC)	D3) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 < 1 < 1 < 5 302	N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.10 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-07 2016-11-07	HT1
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Bicarbonate (as Alkalinity, Carbonate (as Alkalinity, Hydroxide (as Colour, True Conductivity (EC) Cyanide, Total	D3) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 < 1 < 5 302 < 0.0020	N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	HT1
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Bicarbonate (as Alkalinity, Carbonate (as Alkalinity, Hydroxide (as Colour, True Conductivity (EC) Cyanide, Total pH	D3) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 < 1 < 1 < 5 302 < 0.0020 7.76	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	HT1 HT2
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Phenolphthale Alkalinity, Bicarbonate (as Alkalinity, Hydroxide (as Colour, True Conductivity (EC) Cyanide, Total pH Temperature	D3) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 < 1 < 1 < 5 302 < 0.0020 7.76 21	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0020 0.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	HT1 HT2 HT2
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Bicarbonate (as Alkalinity, Bicarbonate (as Colour, True Conductivity (EC) Cyanide, Total pH Temperature Turbidity	D3) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 110 < 1 110 < 1 < 5 302 < 0.0020 7.76 21 0.16	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0020 0.011 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	HT1 HT2 HT2
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Thenolphthale Alkalinity, Phenolphthale Alkalinity, Bicarbonate (as Alkalinity, Hydroxide (as Colour, True Conductivity (EC) Cyanide, Total pH Temperature Turbidity Calculated Parameters	D3) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 110 < 1 < 5 302 < 0.0020 7.76 21 0.16	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.0020 0.011 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L CU μS/cm mg/L CU μS/cm mg/L PH units *C NTU	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	HT1 HT2 HT2
Anions Chloride Fluoride Nitrate (as N) Nitrite (as N) Sulfate General Parameters Alkalinity, Total (as CaCC Alkalinity, Total (as CaCC Alkalinity, Phenolphthale Alkalinity, Bicarbonate (as Alkalinity, Bicarbonate (as Alkalinity, Hydroxide (as Colour, True Conductivity (EC) Cyanide, Total pH Temperature Turbidity Calculated Parameters Hardness, Total (as CaCC	03) in (as CaCO3) is CaCO3) CaCO3) CaCO3)	24.1 < 0.10 0.611 < 0.010 4.1 110 < 1 110 < 1 110 < 1 110 < 1 < 5 302 < 0.0020 7.76 21 0.16 139	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.10 0.010 0.010 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L mg/L mg/L mg/L mg/L mg/L mg/L CU mg/L CU pS/cm mg/L pH units *C NTU	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03 2016-11-03	HT1 HT2 HT2

CARO Analytical Services Rev 2016-06-24

Page 6 of 14

SAMPLE ANALYTICAL DATA

REPORTED TO Parksville, City of PROJECT Drinking Water Pkg						WORK	6110030 2016-11-08	
Analyte		Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Railway	/ Well #5 (6110030-04) [Water] Sa	mpled: 2016-10	-31 09:45,	Continued			
Calculated Paramete	ers, Continued							
Solids, Total Dissolve	bd	153	N/A	2.00	mg/L	N/A	N/A	
Total Metals								
Aluminum, total		< 0.050	N/A	0.005	mg/L	2016-11-03	2016-11-03	
Antimony, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Arsenic, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	
Barium, total		< 0.050	N/A	0.005	mg/L	2016-11-03	2016-11-03	
Boron, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	
Cadmium, total		< 0.00010	N/A	0.00001	mg/L	2016-11-03	2016-11-03	
Calcium, total		30.6	N/A	0.2	mg/L	2016-11-03	2016-11-03	
Chromium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	
Cobalt, total		< 0.00050	N/A	0.00005	mg/L	2016-11-03	2016-11-03	
Copper, total		0.0117	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Iron, total		< 0.10	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Lead, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Magnesium, total		15.2	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Manganese, total		0.0066	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Mercury, total		< 0.00002	N/A	0.00002	mg/L	2016-11-02	2016-11-03	
Molybdenum, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Nickel, total		< 0.0020	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Potassium, total		0.72	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Selenium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	
Sodium, total		8.05	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Uranium, total		0.00038	N/A	0.00002	mg/L	2016-11-03	2016-11-03	
Zinc, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	
Microbiological Para	ameters							
Coliforms, Total		<1	N/A	1	CFU/100 mL		2016-11-01	
Coliforms, Fecal		<1	N/A	1	CFU/100 mL		2016-11-01	
E. coli		<1	N/A	1	CFU/100 mL		2016-11-01	

Sample ID: Railway Well #3 (6110030-05) [Water] Sampled: 2016-10-31 10:05

Anions							
Chloride	38.8	N/A	0.10	mg/L	N/A	2016-11-03	
Fluoride	< 0.10	N/A	0.10	mg/L	N/A	2016-11-03	
Nitrate (as N)	1.03	N/A	0.010	mg/L	N/A	2016-11-03	
Nitrite (as N)	< 0.010	N/A	0.010	mg/L	N/A	2016-11-03	
Sulfate	3.5	N/A	1.0	mg/L	N/A	2016-11-03	
General Parameters							
Alkalinity, Total (as CaCO3)	114	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Phenolphthalein (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Bicarbonate (as CaCO3)	114	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Carbonate (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Alkalinity, Hydroxide (as CaCO3)	< 1	N/A	2	mg/L	N/A	2016-11-03	
Ammonia, Total (as N)	< 0.020	N/A	0.020	mg/L	N/A	2016-11-03	

CARO Analytical Services Rev 2016-06-24

Page 7 of 14

SAMPLE ANALYTICAL DATA

REPORTED TO PROJECT	Parksville, City of Drinking Water Pkg					WORK ORDER REPORTED		6110030 2016-11-08
Analyte		Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Railwa	y Well #3 (6110030-05	i) [Water] Sa	mpled: 2016-10	-31 10:05,	Continued			
General Parameters	s, Continued							
Colour, True		< 5	N/A	5	CU	N/A	2016-11-07	HT1
Conductivity (EC)		369	N/A	2	µS/cm	N/A	2016-11-03	1
Cyanide, Total		< 0.0020	N/A	0.0020	mg/L	N/A	2016-11-08	1
pH		7.77	N/A	0.01	pH units	N/A	2016-11-03	HT2
Temperature		22	N/A		°C	N/A	2016-11-03	HT2
Turbidity		0.12	N/A	0.10	NTU	N/A	2016-11-03	
Calculated Paramet	ters							
Hardness, Total (as	CaCO3)	176	N/A	4.99	mg/L	N/A	N/A	
Langelier Index		-0.04	N/A	-5.0	-	N/A	2016-11-08	1
Solids, Total Dissolv	ed	184	N/A	2.00	mg/L	N/A	N/A	
Total Metals								
Aluminum, total		< 0.050	N/A	0.005	ma/L	2016-11-03	2016-11-03	
Antimony, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Arsenic, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	1
Barium, total		< 0.050	N/A	0.005	mg/L	2016-11-03	2016-11-03	
Boron, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	1
Cadmium, total		0.00010	N/A	0.00001	mg/L	2016-11-03	2016-11-03	1
Calcium, total		38.0	N/A	0.2	mg/L	2016-11-03	2016-11-03	1
Chromium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	1
Cobalt, total		< 0.00050	N/A	0.00005	mg/L	2016-11-03	2016-11-03	l .
Copper, total		0.0083	N/A	0.0002	mg/L	2016-11-03	2016-11-03	l .
Iron, total		< 0.10	N/A	0.01	mg/L	2016-11-03	2016-11-03	l .
Lead, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	l .
Magnesium, total		19.8	N/A	0.01	mg/L	2016-11-03	2016-11-03	
Manganese, total		0.160	N/A	0.0002	mg/L	2016-11-03	2016-11-03	
Mercury, total		< 0.00002	N/A	0.00002	mg/L	2016-11-02	2016-11-03	1
Molybdenum, total		< 0.0010	N/A	0.0001	mg/L	2016-11-03	2016-11-03	
Nickel, total		< 0.0020	N/A	0.0002	mg/L	2016-11-03	2016-11-03	1
Potassium, total		0.86	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Selenium, total		< 0.0050	N/A	0.0005	mg/L	2016-11-03	2016-11-03	1
Sodium, total		8.69	N/A	0.02	mg/L	2016-11-03	2016-11-03	
Uranium, total		0.00022	N/A	0.00002	mg/L	2016-11-03	2016-11-03	
Zinc, total		< 0.040	N/A	0.004	mg/L	2016-11-03	2016-11-03	
Microbiological Par	rameters							
Coliforms, Total		<1	N/A	1	CFU/100 mL		2016-11-01	
Coliforms, Fecal		<1	N/A	1	CFU/100 mL		2016-11-01	
E. coli		<1	N/A	1	CFU/100 mL		2016-11-01	

Sample / Analysis Qualifiers:

 HT1
 The sample was prepared and/or analyzed past the recommended holding time.

 HT2
 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

CARO Analytical Services

Rev 2016-06-24

Page 8 of 14

Full Spectrum Analysis—Well Wate

APPENDIX 1: QUALITY CONTROL DATA

REPORTED TO	Parksville, City of	WORK ORDER	6110030
PROJECT	Drinking Water Pkg	REPORTED	2016-11-08

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate
 that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory
 environment
- Duplicate (Dup): Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical
 method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also
 known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They
 ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's
 accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed.
 Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Anions, Batch B6K0263									
Blank (B6K0263-BLK1)			Prepared	1: 2016-11-	03, Analyz	ed: 2016-	11-03		
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B6K0263-BLK2)			Prepared	1: 2016-11-	03, Analyz	ed: 2016-	11-03		
Chloride	< 0.10	0.10 mg/L							
Fluoride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B6K0263-BS1)			Prepared	1: 2016-11-	03, Analyz	ed: 2016-	11-03		
Chloride	15.3	0.10 mg/L	16.0		96	90-110			
Fluoride	3.84	0.10 mg/L	4.00		96	88-108			
Nitrate (as N)	3.98	0.010 mg/L	4.00		100	93-108			
Nitrite (as N)	1.90	0.010 mg/L	2.00		95	83-110			
Sulfate	15.5	1.0 mg/L	16.0		97	91-109			
LCS (B6K0263-BS2)			Prepared	i: 2016-11-	03, Analyz	ed: 2016-	11-03		
Chloride	15.3	0.10 mg/L	16.0		96	90-110			
Fluoride	3.78	0.10 mg/L	4.00		94	88-108			
Nitrate (as N)	3.96	0.010 mg/L	4.00		99	93-108			
Nitrite (as N)	1.80	0.010 mg/L	2.00		90	83-110			
Sulfate	15.9	1.0 mg/L	16.0		99	91-109			
Duplicate (B6K0263-DUP2)	5	ource: 6110030-05	Prepared	i: 2016-11-	03, Analyz	ed: 2016-	11-03		
Chloride	38.7	0.10 mg/L		38.8			<1	10	
Fluoride	< 0.10	0.10 mg/L		< 0.10				10	
Nitrate (as N)	1.03	0.010 mg/L		1.03			<1	10	
Nitrite (as N)	< 0.010	0.010 mg/L		< 0.010				6	
Sulfate	3.5	1.0 mg/L		3.5				6	

CARO Analytical Services

Rev 2016-06-24

Page 9 of 14

Full Spectrum Analysis—Well Wate

APPENDIX 1: QUALITY CONTROL DATA

REPORTED TO F	Parksville, City of Drinking Water Pkg						WOR	K ORDER	R 61 20	10030 16-11-08
Analyte		Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
nions, Batch B6K026	3, Continued									
Matrix Spike (B6K0263	-MS2)	So	urce: 6110030-05	Prepared	: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Chloride		58.6	0.10 mg/L	16.0	38.8	124	75-125			
Fluoride		3.71	0.10 mg/L	4.00	< 0.10	93	75-125			
Nitrate (as N)		4.95	0.010 mg/L	4.00	1.03	98	75-125			
Nitrite (as N)		1.86	0.010 mg/L	2.00	< 0.010	93	75-125			
Sulfate		18.8	1.0 mg/L	16.0	3.5	96	75-125			
eneral Parameters, B	atch B6K0085									
Blank (B6K0085-BLK1)			Prepared	i: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Ammonia, Total (as N)		< 0.020	0.020 mg/L							
Blank (B6K0085-BLK2)			Prepared	i: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Ammonia, Total (as N)		< 0.020	0.020 mg/L							
LCS (B6K0085-BS1)				Prepared	d: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Ammonia, Total (as N)		1.01	0.020 mg/L	1.00		101	86-111			
LCS (B6K0085-BS2)				Prepared	f: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Ammonia, Total (as N)		1.01	0.020 mg/L	1.00		101	86-111			
General Parameters, B	atch B6K0220									
Blank (B6K0220-BLK1)			Prepared	d: 2016-11-	07, Analyz	zed: 2016-	-11-07		
Colour, True		< 5	5 CU							
LCS (B6K0220-BS1)				Prepared	1: 2016-11-	07, Analyz	zed: 2016-	-11-07		
Colour, True		10	5 CU	10.0		100	85-115			
eneral Parameters, B	atch B6K0259									
Blank (B6K0259-BLK1)			Prepared	i: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Cyanide, Total		< 0.0020	0.0020 mg/L							
LCS (B6K0259-BS1)				Prepared	1: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Cyanide, Total		0.0201	0.0020 mg/L	0.0200		100	85-115			
LCS Dup (B6K0259-BS	5D1)			Prepared	1: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Cyanide, Total		0.0187	0.0020 mg/L	0.0200		94	85-115	7	10	
eneral Parameters, B	atch B6K0271									
Blank (B6K0271-BLK1))			Prepared	d: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Alkalinity, Total (as CaCO3	3)	<1	2 mg/L							
Alkalinity, Phenolphthalein	(as CaCO3)	<1	2 mg/L							
A CONTRACTOR VIEW	CaCO3)	<1	2 mg/L							
Alkalinity, Dicarbonate (as	ac03)	<1 <1	2 mg/L 2 mg/L							
Alkalinity, Carbonate (as C Alkalinity, Hydrovide (as C		2.1	2 mg/c							
Alkalinity, Carbonate (as C Alkalinity, Hydroxide (as C Conductivity (EC)	acco)	<1	2 µS/cm							
Alkalinity, Carbonate (as C Alkalinity, Hydroxide (as C Conductivity (EC) Blank (B6K0271-BLK2))	<1	2 µS/cm	Prepared	1: 2016-11-	03, Analyz	zed: 2016	-11-03		
Alkalinity, Carbonate (as C Alkalinity, Hydroxide (as C Conductivity (EC) Blank (B6K0271-BLK2 Alkalinity, Total (as CaCOS)	<1	2 µS/cm 2 mg/L	Prepared	1: 2016-11-	03, Analyz	zed: 2016	-11-03		
Alkalinity, Carbonate (as C Alkalinity, Hydroxide (as C Conductivity (EC) Blank (B6K0271-BLK2 Alkalinity, Total (as CaCO Alkalinity, Phenolphthalein) 3) (as CaCO3)	<1 <1 <1	2 µS/cm 2 mg/L 2 mg/L	Prepared	i: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Alkalinity, Carbonate (as Alkalinity, Hydroxide (as C Conductivity (EC) Blank (B6K0271-BLK2 Alkalinity, Total (as CaCO Alkalinity, Phenolphthalein Alkalinity, Bicarbonate (as) 3) (as CaCO3) CaCO3)	<1 <1 <1 <1	2 µS/cm 2 mg/L 2 mg/L 2 mg/L	Prepared	i: 2016-11-	03, Analyz	zed: 2016-	-11-03		
Alkalinity, Carbonate (as C Alkalinity, Hydroxide (as C Conductivity (EC) Blank (B6K0271-BLK2 Alkalinity, Total (as CaCO Alkalinity, Denotphthalein Alkalinity, Bicarbonate (as Alkalinity, Carbonate (as C) 3) (as CaCO3) CaCO3) aCO3)	<1 <1 <1 <1	2 µS/cm 2 mg/L 2 mg/L 2 mg/L 2 mg/L 2 mg/L	Prepared	1: 2016-11-	03, Analyz	zed: 2016-	-11-03		

CARO Analytical Services Rev 2016-06-24

Page 10 of 14

APPENDIX 1: QUALITY CONTROL DATA

REPORTED TO PROJECT	Parksville, City of Drinking Water Pkg						WOR REPO	K ORDER	₹ 61 20	10030 16-11-08
Analyte		Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
General Parameters	s, Batch B6K0271, Contin	nued								
Blank (B6K0271-Bl	LK2), Continued			Prepared	i: 2016-11-	03, Analyz	zed: 2016	-11-03		
Conductivity (EC)		<1	2 µS/cm							
Blank (B6K0271-Bl	LK3)			Prepared	1: 2016-11-	03. Analyz	zed: 2016	-11-03		
Alkalinity, Total (as Ca	CO3)	<1	2 mg/L							
Alkalinity, Phenolphtha	alein (as CaCO3)	<1	2 mg/L							
Alkalinity, Bicarbonate	e (as CaCO3)	<1	2 mg/L							
Alkalinity, Carbonate ((as CaCO3)	<1	2 mg/L							
Conductivity (EC)	as cacos)	1	2 mg/L 2 uS/cm							BLK
CS (DEK0274 DS4	0			Proparad	016 11	02 Apply	rod: 2016	11.02		
Alkalinity, Total (as Ca	(CO3)	103	2 mg/L	100	. 2010-11-	103, Analyz 103	96-108	-11-03		
LCS (B6K0271-PS1	2)			Prepared	2016-11	03 Analys	red: 2016	-11-03		
Conductivity (FC)	-1	1410	2 uS/cm	1410	. 2010-11-	100	95-104			
	•	1410	2 porom	Drepered	0.0016 11	02 Applu	2010	11.02		
Alkalinity Total (as Ca	3) (CO3)	102	2 ma/l	Prepareo 100	: 2016-11-	102, Analyz	96-108	-11-03		
analitity, total (as ca	0000	102	2 mg/L	Deserved		02 Anothe	30-100	44.00		
LCS (B6K02/1-B54	•)		00/	Prepareo	1: 2016-11-	-03, Analyz	zed: 2016	-11-03		
Conductivity (EC)		1410	2 µ5/cm	1410		100	95-104			
LCS (B6K0271-BS	5)			Prepared	1: 2016-11-	03, Analyz	zed: 2016	-11-03		
Alkalinity, Total (as Ca	iCO3)	102	2 mg/L	100		102	96-108			
LCS (B6K0271-BS6	6)			Prepared	i: 2016-11-	03, Analyz	zed: 2016	-11-03		
Conductivity (EC)		1430	2 µS/cm	1410		102	95-104			
Reference (B6K027	71-SRM1)			Prepared	1: 2016-11-	03, Analyz	zed: 2016	-11-03		
рН		6.97	0.01 pH units	7.00		100	98-102			
Reference (B6K027	71-SRM2)			Prepared	1: 2016-11-	03, Analyz	zed: 2016	-11-03		
рН		6.97	0.01 pH units	7.00		100	98-102			
Reference (B6K027	71-SRM3)			Prepared	1: 2016-11-	03, Analyz	zed: 2016	-11-03		
pH		6.97	0.01 pH units	7.00		100	98-102			
eneral Parameters Blank (B6K0348-Bl	s, Batch B6K0348 LK1)			Prepared	1: 2016-11-	04, Analyz	zed: 2016	-11-04		
Turbidity		< 0.10	0.10 NTU							
Blank (B6K0348-Bl	LK2)			Prepared	1: 2016-11-	04, Analyz	zed: 2016	-11-04		
Turbidity		< 0.10	0.10 NTU							
Blank (B6K0348-Bl	LK3)			Prepared	1: 2016-11-	04, Analyz	zed: 2016	-11-04		
Turbidity		< 0.10	0.10 NTU							
LCS (B6K0348-BS1	1)			Prepared	1: 2016-11-	04, Analyz	zed: 2016	-11-04		
Furbidity		40.3	0.10 NTU	40.0		101	90-110			
CS (B6K0348-BS)	2)			Prepared	: 2016-11-	04, Analys	zed: 2016	-11-04		
Furbidity	-1	40.3	0.10 NTU	40.0	20.0 .1	101	90-110			
CE (DEK0349 DE	9)			Bronared	0.016 44	04 Apple	red: 2016	11.04		
Luo (Donus46-85) Euclidity	וי	40.4	0.10 MTU	repared	1. 2010-11-	104, Analyz	00.440	-11-04		
raidiaity		40.4	0.10 NTO	40.0		101	90-110			

CARO Analytical Services Rev 2016-06-24

Page 11 of 14

Full Spectrum Analysis—Well Wate

APPENDIX 1: QUALITY CONTROL DATA

REPORTED TO PROJECT	Parksville, City of Drinking Water Pkg						WOR REPO	K ORDEF	e 61 20	10030 16-11-08
Analyte		Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
General Parameters,	Batch B6K0456									
Blank (B6K0456-BLK	(1)			Prepared	1: 2016-11-	-08, Analyz	zed: 2016	-11-08		
Cyanide, Total		< 0.0020	0.0020 mg/L							
Blank (B6K0456-BLK	(2)			Prepared	1: 2016-11-	-08. Analy:	zed: 2016	-11-08		
Cyanide, Total	-,	< 0.0020	0.0020 mg/L							
				Proparat	+ 2016 11	09 Apple	rod: 2016	11.09		
LCS (B6K0456-BS1)		0.0100	0.0000 mail	- repared	1. 2010-11-	-00, Analy.	2010	-11-00		
Cyanide, rotai		0.0199	0.0020 mg/L	0.0200		99	00-110			
LCS (B6K0456-BS2)				Prepared	1: 2016-11-	-08, Analyz	zed: 2016	-11-08		
Cyanide, Total		0.0204	0.0020 mg/L	0.0200		102	85-115			
LCS Dup (B6K0456-E	3SD1)			Prepared	1: 2016-11-	-08, Analya	zed: 2016	-11-08		
Cyanide, Total		0.0193	0.0020 mg/L	0.0200		97	85-115	3	10	
LCS Due (BEKMEE E	2002)			Proparat	+ 2016 11	09 Apple	rod: 2016	11.09		
Cuppide Total	5502)	0.0109	0.0020 mall	- repared	1. 2010-11-	-00, Analy.	95 445	-11-00	10	
Total Metals, Batch B	36K0162			Prepared	+ 2016-11	02 Apply	rod: 2016	11.03		
Mercury total		< 0.00002	0.00002 moll	rieparec	. 2010-11-	-02, Analy/	2010	-11-05		
mercury, total		< 0.00002	0.00002 mg/L	-						
Reference (B6K0162-	-SRM1)			Prepared	1: 2016-11-	-02, Analy	zed: 2016	-11-03		
Total Metals, Batch B	36K0195			Proparat	+ 2016 11	02 Apply	rod: 2016	11.02		
Aluminum total		< 0.005	0.005 mail	rieparec	. 2010-11-	-00, Analys	2010	-11-05		
Antimony total		< 0.005	0.005 mg/L							
Arsenic, total		< 0.0005	0.0005 mg/L							
Barium, total		< 0.005	0.005 mg/L							
Boron, total		< 0.004	0.004 mg/L							
Cadmium, total		< 0.00001	0.00001 mg/L							
Calcium, total		< 0.0	0.2 mg/L							
Cobalt, total		< 0.00005	0.00005 mg/L							
Copper, total		< 0.0002	0.0002 mg/L							
Iron, total		< 0.01	0.01 mg/L							
Lead, total		< 0.0001	0.0001 mg/L							
Magnesium, total		< 0.01	0.01 mg/L							
Manganese, total Molybdenum, total		< 0.0002	0.0002 mg/L							
Nickel, total		< 0.0001	0.0002 mg/L							
Potassium, total		< 0.02	0.02 mg/L							
Selenium, total		< 0.0005	0.0005 mg/L							
Sodium, total		< 0.02	0.02 mg/L							
Uranium, total		< 0.00002	0.00002 mg/L							
Matrix Spike (B6K01)	95-MS1)	< 0.004 Sc	ource: 6110030-01	Prepared	1: 2016-11	-03, Analy	zed: 2016	-11-03		
Antimony, total		0.370	0.0001 mg/L	0.400	< 0.0010	92	84-125			
Arsenic, total		0.194	0.0005 mg/L	0.200	< 0.0050	97	85-116			
Barium, total		0.956	0.005 mg/L	1.00	< 0.050	95	87-114			
Chromium, total		0.0900	0.00001 mg/L	0.100	< 0.00010	100	89-120			

CARO Analytical Services Rev 2016-06-24

Page 12 of 14

APPENDIX 1: QUALITY CONTROL DATA

REPORTED TO PROJECT	Parksville, City of Drinking Water Pkg						WOR REPO	K ORDER ORTED	61 20	10030 16-11-08
Analyte		Result	MRL Uni	ts Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes
Total Metals, Batch	B6K0195, Continued									
Matrix Spike (B6K0	195-MS1), Continued	So	urce: 6110030-	01 Prepared	d: 2016-11-	03, Analyz	ed: 2016	-11-03		
Cobalt, total		0.403	0.00005 mg/	0.400	< 0.00050	101	88-120			
Copper, total		0.423	0.0002 mg/	0.400	< 0.0020	105	88-125			
Iron, total		2.22	0.01 mg/	2.00	0.15	103	88-119			
Lead, total		0.204	0.0001 mg/	0.200	< 0.0010	102	89-118			
Manganese, total		0.407	0.0002 mg/	0.400	0.0053	100	84-120			
Nickel, total		0.408	0.0002 mg/	0.400	< 0.0020	102	87-119			
Selenium, total		0.102	0.0005 mg/	0.100	< 0.0050	102	85-113			
Zinc, total		0.985	0.004 mg/	1.00	< 0.040	98	85-116			
Reference (B6K019	5-SRM1)			Prepare	d: 2016-11-	03, Analyz	ed: 2016	-11-03		
Aluminum, total		0.305	0.005 mg/	0.303		101	81-129			
Antimony, total		0.0475	0.0001 mg/	0.0511		93	88-114			
Arsenic, total		0.116	0.0005 mg/	0.118		99	88-114			
Barium, total		0.742	0.005 mg/	0.823		90	72-104			
Boron, total		3.27	0.004 mg/	3.45		95	75-121			
Cadmium, total		0.0474	0.00001 mg/	0.0495		96	89-111			
Calcium, total		11.6	0.2 mg/	. 11.6		100	86-121			
Chromium, total		0.252	0.0005 mg/	0.250		101	89-114			
Cobalt, total		0.0396	0.00005 mg/	0.0377		105	91-113			
Copper, total		0.533	0.0002 mg/	0.486		110	91-115			
Iron, total		0.53	0.01 mg/	0.488		108	77-124			
Lead, total		0.202	0.0001 mg/	0.204		99	92-113			
Magnesium, total		3.97	0.01 mg/	3.79		105	78-120			
Manganese, total		0.109	0.0002 mg/	0.109		100	90-114			
Molybdenum, total		0.190	0.0001 mg/	0.198		96	90-111			
Nickel, total		0.256	0.0002 mg/	0.249		103	90-111			
Potassium, total		7.50	0.02 mg/	7.21		104	84-113			
Selenium, total		0.129	0.0005 mg/	0.121		107	85-115			
Sodium, total		8.05	0.02 mg/	7.54		107	82-123			
Uranium, total		0.0277	0.00002 mg/	0.0306		90	85-120			
Zinc, total		2.46	0.004 mg/	2.49		99	85-111			

QC Qualifiers:

BLK Analyte concentration in the Method Blank is above the Method Reporting Limit (MRL).

CARO Analytical Services Rev 2016-06-24

Page 13 of 14

ull Spectrum Analysis—Well Water

CAR			CARO BC COC, Rev 2015- RECORD COC# B 35456 PAGE OF	⁰⁹
ANALYTICAL S		Barb Silenie KS TH	ME: 10:45 HM PLOND TIME: MAL	ĬĠ
COMPANY: City of Brkswille COM	OICE TO: SAME AS REPORT TO MPANY:	PO 002303		
ADDRESS: 1116 Herring gull way ADD	DRESS:	Routine: (5-7 Days) Rush: 1 Day* 2 Day* 3 Day* 1	Canadian Drinking Water Quality Guidelines Report? BC Drinking Water Protection Act / Reg. BC Drinking Water Protection Conf. Conf	
CONTACT: Barb Silenieks CON	ITACT:	*Contact Lab To Confirm. Surcharge May		0
TEL/FAX:TEL/	/FAX:		ANALYSES REQUESTED:	_
DELURERY METHOD: EMAIL & MAIL OTHER' DELU DATA FORMAT: EXCEL & WATERITAX Stat EMAI EQUIS BCEMS OTHER' EMAI EMAIL 1: 03: EXCEL & BCEMS EMAIL & EMAIL EMAIL 3: PO A	VERY METHOD: EMAIL [] MAIL [] OTHER* [] L 1: L 2: L 3: ¥:	PHC FI	M Inc. PH Inc.	
** NEW ** If you would like to sign up for ClientConnect and/or EnviroChai	in, CARO's online service offerings, check here:	A A O O S O A A	ALK SAL	
CLIENT SAMPLE ID:	DATE TIME TIME G a flow/volumedia/	+ 4 BIEX VPH VOC VPH VOC VPH PAH L/HE PAH L/HE	METALS-SOIL PH D EC T TSS VS C PECAL COUPO FECAL COUPO ASBESTOS	НОГД
1 River V	5 Oct 31 8:45			
2 Springward well #6 4. 5	5 Oct 31 9:15			
3 Springwood well #51 5	5 Oct 31 9:30			
4 Railway Well# 5 - 5	0ct319:45		MV M	
5 Reilway Well # 3V	5 00+31 10:05			
		most unloss otherwise specifically	PAYMENT- SAMPLE RECEIPT CONDITION-	\square
Supplies Needed: SAMPLE RETEN Supplies Needed: Source of the second sec	ION INSTRUCTIONS (Discarded 30 days after Re Days Longer Date (Surcharges will Apply): RUCTIONS:	port unless otherwise specified):		3
			CASH COOLER 3 (°C): ICE: Y C N C	5
			Page 14 of 1	14

full Spectrum Analysis—Well Water

Report Date: 2016/02/05

Success Through Science®

City of Parksville

TRIHALOMETHANES (THM) IN WATER

Maxxam ID		OB0612		OB0613		OB0614	OB0615		
Sampling Date		2016/02/01 09:30		2016/02/01 09:35		2016/02/01 09:45	2016/02/01 09:55		
COC Number		483862-04-01		483862-04-01		483862-04-01	483862-04-01		
	UNITS	851 TEMPLE	RDL	450 WILLOW	RDL	CORFIELD	1116 HERRING GULL	RDL	QC Batch
Volatiles									
Chloroform	ug/L	1.0	1.0	<1.0	1.0	1.6	1.8	1.0	8183079
Chlorodibromomethane	ug/L	3.1	1.0	2.6	1.0	4.5	4.4	1.0	8183079
Bromodichloromethane	ug/L	<1.6 (1)	1.6	<1.4 (1)	1.4	2.8	3.1	1.0	8183079
Bromoform	ug/L	1.8	1.0	1.7	1.0	2.4	1.9	1.0	8183079
Surrogate Recovery (%)		•				•			
1,4-Difluorobenzene (sur.)	%	103		104		104	105		8183079
4-Bromofluorobenzene (sur.)	%	97		96		94	95		8183079
D4-1,2-Dichloroethane (sur.)	%	100		99		98	99		8183079
RDL = Reportable Detection Lir (1) Detection limits raised due	mit to matr	ix interference.						•	

SAMPLE ANALYTICAL DATA

REPORTED TO Parksville, City PROJECT 361341 - THM (of Quarterly (Island H	ealth)			WORK ORDER REPORTED		
Analyte	Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: 770 Sorie (6050239-01)	[Water] Sampled	: 2016-05-02 09	:50				
Calculated Parameters							
Total Trihalomethanes	0.009	N/A	0.004	mg/L	N/A	N/A	
Volatile Organic Compounds (VOC)							
Bromodichloromethane	0.002	N/A	0.001	ma/l	N/A	2016-05-04	
Bromoform	0.001	N/A	0.001	ma/L	N/A	2016-05-04	
Chloroform	0.003	N/A	0.001	ma/L	N/A	2016-05-04	
Dibromochloromethane	0.003	N/A	0.001	mg/L	N/A	2016-05-04	
Surrogate: Toluene-d8	94		70-130	%	N/A	2016-05-04	
Surrogate: 4-Bromofluorobenzene	94		70-130	%	N/A	2016-05-04	
Total Trihalomethanes Volatile Organic Compounds (VOC) Bromodichloromethane	0.007	N/A N/A	0.004	mg/L mg/L	N/A	N/A 2016-05-04	
Bromoform	< 0.001	N/A	0.001	mg/L	N/A	2016-05-04	
Chloroform	0.004	N/A	0.001	mg/L	N/A	2016-05-04	
Dibromochloromethane	0.002	N/A	0.001	mg/L	N/A	2016-05-04	
Surrogate: Toluene-d8	96		70-130	%	N/A	2016-05-04	
Surrogate: 4-Bromofluorobenzene	93		70-130	%	N/A	2016-05-04	
Sample ID: Top of Moilliet (6050239	9-03) [Water] Sam	pled: 2016-05-0	2 10:05				
Calculated Parameters	0.010	NIA	0.004	ma/l	NVA	NI/A	
Total Tribalomethanes	0.010	1907	0.004	mg/L	19075	DWA	
Iotal Trinalomethanes							
Total Trinalomethanes Volatile Organic Compounds (VOC) Bromedichloromethane	0.001	N/A	0.001	mall	N/A	2016-05-04	
Iotal Trinalomethanes Volatile Organic Compounds (VOC) Bromodichloromethane Bromoform	0.001	N/A	0.001	mg/L	N/A	2016-05-04	
Total Trinalomethanes Volatile Organic Compounds (VOC) Bromodichloromethane Bromoform Chloroform	0.001	N/A N/A	0.001	mg/L mg/L mg/l	N/A N/A	2016-05-04 2016-05-04 2016-05-04	
Total Trinalomethanes Volatile Organic Compounds (VOC) Bromodichloromethane Bromoform Chloroform Ditromochloromethane	0.001 < 0.001 0.009	N/A N/A N/A	0.001	mg/L mg/L mg/L	N/A N/A N/A	2016-05-04 2016-05-04 2016-05-04 2016-05-04	
Total Trinalomethanes Volatile Organic Compounds (VOC) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Surgnate: Toluene-dB	0.001 < 0.001 0.009 < 0.001	N/A N/A N/A N/A	0.001 0.001 0.001 0.001 70-130	mg/L mg/L mg/L %	N/A N/A N/A N/A	2016-05-04 2016-05-04 2016-05-04 2016-05-04 2016-05-04	
Total Trinalomethanes Volatile Organic Compounds (VOC) Bromodichloromethane Bromoform Chloroform Dibromochloromethane Surrogate: Toluene-d8 Surrogate: 4.Bromofluorohenzene	0.001 < 0.001 0.009 < 0.001 94 92	N/A N/A N/A N/A	0.001 0.001 0.001 70-130 70-130	mg/L mg/L mg/L %	N/A N/A N/A N/A N/A	2016-05-04 2016-05-04 2016-05-04 2016-05-04 2016-05-04 2016-05-04	

Calculated Parameters						
Total Trihalomethanes	0.013	N/A	0.004 mg/L	N/A	N/A	
Volatile Organic Compounds (VOC)						
Bromodichloromethane	0.001	N/A	0.001 mg/L	N/A	2016-05-05	
Bromoform	< 0.001	N/A	0.001 mg/L	N/A	2016-05-05	
Chloroform	0.012	N/A	0.001 mg/L	N/A	2016-05-05	
Dibromochloromethane	< 0.001	N/A	0.001 mg/L	N/A	2016-05-05	
Surrogate: Toluene-d8	95		70-130 %	N/A	2016-05-05	
Surrogate: 4-Bromofluorobenzene	92		70-130 %	N/A	2016-05-05	

CARO Analytical Services Rev 2016-04-01

Page 3 of 6

I

SAMPLE ANALYTICAL DATA

REPORTED TO PROJECT	Parksville, City o 361341 - THM Q	f uarterly (Island H	ealth)			WORK	ORDER RTED	6080151 2016-08-10
Analyte		Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Works	Yard (6080151-01) [Water] Sampl	ed: 2016-08-02	10:30				
Calculated Parame	ters							
Total Trihalomethan	es	0.012	N/A	0.004	mg/L	N/A	N/A	
Volatile Organic Co	ompounds (VOC)							
Bromodichlorometh	ane	0.002	N/A	0.001	mg/L	N/A	2016-08-07	
Bromoform		< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Chloroform		0.010	N/A	0.001	mg/L	N/A	2016-08-07	
Dibromochlorometh	ane	< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Surrogate: Toluene	-d8	96		70-130	%	N/A	2016-08-07	,
Surrogate: 4-Bromo	ofluorobenzene	100		70-130	%	N/A	2016-08-07	,
Calculated Parame Total Trihalomethan	ters les	0.020	N/A	0.004	mg/L	N/A	N/A	
Volatile Organic Co	ompounds (VOC)							
Bromodichlorometh	ane	0.004	N/A	0.001	mg/L	N/A	2016-08-07	
Bromoform		< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Chloroform		0.016	N/A	0.001	mg/L	N/A	2016-08-07	
Dibromochlorometh	ane	< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Surrogate: Toluene	-d8	93		70-130	%	N/A	2016-08-07	,
Surrogate: 4-Bromo	ofluorobenzene	95		70-130	%	N/A	2016-08-07	
ample ID: Templ	e 859 (6080151-03) [Water] Sample	ed: 2016-08-02 (09:15				
Calculated Parame	ters							
Total Trihalomethan	es	0.007	N/A	0.004	mg/L	N/A	N/A	
Volatile Organic Co	ompounds (VOC)							
Bromodichlorometh	200	0.002	NI/A	0.001	ma/l	NI/A	2016-08-07	

''y' Bromoform 0.001 N/A 0.001 mg/L N/A 2016-08-07 0.001 mg/L Chloroform 0.002 N/A N/A 2016-08-07 Dibromochloromethane 0.002 N/A 0.001 mg/L N/A 2016-08-07 70-130 % Surrogate: Toluene-d8 93 N/A 2016-08-07 Surrogate: 4-Bromofluorobenzene 98 70-130 % N/A 2016-08-07

Sample ID: Ermineskin 760 (6080151-04) [Water] Sampled: 2016-08-02 09:35

Calculated Parameters							
Total Trihalomethanes	< 0.004	N/A	0.004	mg/L	N/A	N/A	
Volatile Organic Compounds (VOC)							
Bromodichloromethane	< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Bromoform	< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Chloroform	< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Dibromochloromethane	< 0.001	N/A	0.001	mg/L	N/A	2016-08-07	
Surrogate: Toluene-d8	96		70-130	%	N/A	2016-08-07	
Surrogate: 4-Bromofluorobenzene	99		70-130	%	N/A	2016-08-07	

CARO Analytical Services Rev 2016-06-24

Page 3 of 6

SAMPLE ANALYTICAL DATA

REPORTED TO PROJECT	Parksville, City of 361341 - THM Qu	arterly (Island H	ealth)			WORK REPO	CORDER RTED	6111040 2016-11-22
Analyte		Result / Recovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: Temple	e (6111040-01) [Wa	ter] Sampled: 2	016-11-14 09:20					
Calculated Paramet	ers							
Total Trihalomethane	es	0.005	N/A	0.004	mg/L	N/A	N/A	
Volatile Organic Co	mpounds (VOC)							
Bromodichlorometha	ane	0.001	N/A	0.001	mg/L	N/A	2016-11-16	
Bromoform		0.001	N/A	0.001	mg/L	N/A	2016-11-16	
Chloroform		< 0.001	N/A	0.001	mg/L	N/A	2016-11-16	
Dibromochlorometha	ane	0.002	N/A	0.001	mg/L	N/A	2016-11-16	
				70 420	94	N//A	2016-11-16	
Surrogate: Toluene-	d8	106		70-130	70	19/7	2010 11 10	
Surrogate: Toluene-o Surrogate: 4-Bromol	d8 fluorobenzene	106 106		70-130	%	N/A	2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane	d8 fluorobenzene es Kin (6111040-02) ters es	106 106 [Water] Samp < 0.004	led: 2016-11-14 0	70-130 70-130 8:30 0.004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N/A N/A	2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co	d8 fluorobenzene os Kin (6111040-02) lers es mpounds (VOC)	106 106 [Water] Samp < 0.004	led: 2016-11-14 0	70-130 70-130 8:30 0.004	mg/L	N/A N/A	2016-11-16 N/A	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co Bromodichlorometha	d8 fluorobenzene es Kin (6111040-02) eers es mpounds (VOC) ane	106 106 [Water] Samp < 0.004 < 0.001	led: 2016-11-14 0 N/A N/A	0.004 0.001	mg/L	N/A N/A	2016-11-16 N/A 2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co Bromodichlorometha Bromoform	d8 fluorobenzene es Kin (6111040-02) lers es mpounds (VOC) ane	106 106 [Water] Samp < 0.004 < 0.001 < 0.001	led: 2016-11-14 0 N/A N/A N/A	0.004 0.001 0.001	mg/L mg/L	N/A N/A N/A N/A	2016-11-16 N/A 2016-11-16 2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co Bromodichlorometha Bromoform Chloroform	d8 fluorobenzene es Kin (6111040-02) lers es mpounds (VOC) ane	106 106 [Water] Sampi < 0.004 < 0.001 < 0.001 < 0.001	led: 2016-11-14 0 N/A N/A N/A N/A	0.004 0.001 0.001 0.001	mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A	2016-11-16 N/A 2016-11-16 2016-11-16 2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co Bromodichlorometha Bromoform Chloroform Dibromochlorometha	d8 fluorobenzene es Kin (6111040-02) lers es mpounds (VOC) ane ane	106 106 [Water] Sampi < 0.004 < 0.001 < 0.001 < 0.001 0.001	led: 2016-11-14 0 N/A N/A N/A N/A N/A	0.004 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A	2016-11-16 N/A 2016-11-16 2016-11-16 2016-11-16 2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co Bromodichlorometha Bromoform Chloroform Dibromochlorometha Surrogate: Toluene-	d8 fluorobenzene es Kin (6111040-02) hers es mpounds (VOC) ane ane d8	106 106 [Water] Sampi < 0.004 < 0.001 < 0.001 < 0.001 0.001 107	led: 2016-11-14 0 N/A N/A N/A N/A N/A	70-130 70-130 8:30 0.004 0.001 0.001 0.001 0.001 70-130	mg/L mg/L mg/L mg/L %	N/A N/A N/A N/A N/A N/A	2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Co Bromodichlorometha Bromoform Chloroform Dibromochlorometha Surrogate: Toluene- Surrogate: 4-Bromol	d8 fluorobenzene es Kin (6111040-02) ers es mpounds (VOC) ane ane d8 fluorobenzene	106 106 [Water] Samp < 0.004 < 0.001 < 0.001 < 0.001 0.001 107 107	led: 2016-11-14 0 N/A N/A N/A N/A N/A	70-130 70-130 8:30 0.004 0.001 0.001 0.001 0.001 70-130 70-130	mg/L mg/L mg/L mg/L mg/L % %	N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-16 N/A 2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16	
Surrogate: Toluene-(Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Col Bromodichlorometha Bromoform Chloroform Dibromochlorometha Surrogate: Toluene-(Surrogate: 4-Bromol Sample ID: Corfiel	d8 fluorobenzene es Kin (6111040-02) vers es mpounds (VOC) ane ane d8 fluorobenzene d (6111040-03) [Wa	106 106 [Water] Samp < 0.004 < 0.001 < 0.001 < 0.001 107 107 ater] Sampled:	led: 2016-11-14 0 N/A N/A N/A N/A N/A 2016-11-14 08:40	0.004 0.001 0.001 0.001 0.001 0.001 70-130 70-130	mg/L mg/L mg/L mg/L mg/L % %	N/A N/A N/A N/A N/A N/A N/A N/A	2016-11-16 N/A 2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16	
Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Ermine Calculated Paramet Total Trihalomethane Volatile Organic Cou Bromodichlorometha Bromoform Chloroform Dibromochlorometha Surrogate: Toluene- Surrogate: 4-Bromol Sample ID: Corfiel Calculated Paramet	d8 fluorobenzene es Kin (6111040-02) ters es mpounds (VOC) ane ane d8 fluorobenzene d (6111040-03) [Wa ters	106 106 [Water] Sampl < 0.004 < 0.001 < 0.001 < 0.001 0.001 107 107 107	led: 2016-11-14 0 N/A N/A N/A N/A N/A 2016-11-14 08:40	70-130 70-130 8:30 0.004 0.001 0.001 0.001 0.001 70-130 70-130	mg/L mg/L mg/L mg/L % %	N/A N/A N/A N/A N/A N/A N/A	2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16 2016-11-16	

Volatile Organic Compounds (VOC)							
Bromodichloromethane	0.004	N/A	0.001	mg/L	N/A	2016-11-17	
Bromoform	0.002	N/A	0.001	mg/L	N/A	2016-11-17	
Chloroform	0.004	N/A	0.001	mg/L	N/A	2016-11-17	
Dibromochloromethane	0.004	N/A	0.001	mg/L	N/A	2016-11-17	
Surrogate: Toluene-d8	116		70-130	%	N/A	2016-11-17	
Surrogate: 4-Bromofluorobenzene	116		70-130	%	N/A	2016-11-17	

Sample ID: Works Yard (6111040-04) [Water] Sampled: 2016-11-14 09:00

Calculated Parameters					
Total Trihalomethanes	0.006	N/A	0.004	mg/L	N/A N/A
Volatile Organic Compounds (VOC)					
Bromodichloromethane	0.002	N/A	0.001	mg/L	N/A 2016-11-17
Bromoform	0.001	N/A	0.001	mg/L	N/A 2016-11-17
Chloroform	0.001	N/A	0.001	mg/L	N/A 2016-11-17
Dibromochloromethane	0.002	N/A	0.001	mg/L	N/A 2016-11-17
Surrogate: Toluene-d8	112		70-130	%	N/A 2016-11-17
Surrogate: 4-Bromofluorobenzene	111		70-130	%	N/A 2016-11-17

CARO Analytical Services Rev 2016-06-24

Page 3 of 6

vancouver Island health authority		CITY OF PARKSVILLE MAR 0 2 2016 OPERATIONS HEALTH PROTECTION
	PERMIT to OPERATE	
A N A Drinking Wate	WATER SUPPLY SYSTEM r System with 301- 10.000 cc	onnections
Water System Name: Premises Number:	PARKSVILLE, WWS 1310814	
Premises Address:	1116 Herring Gull Way Parksville, BC V9P 2H3	
Water System Owner:	City of Parksville	
City of Parksville is hereby permitte required to operate this system in a accordance with the conditions set part of any construction permit. The water supply system for which	ed to operate the above potabl accordance with the Drinking W out in this operating permit an this operating permit applies in	le water supply system and is Vater Protection Act and in d conditions established as s generally described as:
Service Delivery Area: Source Water: Water Treatment methods are: Water Disinfection methods are:	Englishman River Water Service Area Multiple wells & Englishman River (May to October) None Chlorination (liquid & gas).	
Number of Connections	301-10,000 Connections - D	TWO
Operating conditions specific to th	is water supply system are in A	Appendix A.
Date: July 1, 1992	Issued By: Dell Office	O. really L
This permit mu in a conspicuous place	st be displayed and is not transferable	Place Decal Here

Excellent health and care for everyone, everywhere, everytime.

March 1, 2016

Mike Squire Program Manager Englishman River Water Service 1116 Herring Gull Way PO Box 1390 Parksville, BC V9P 2H3

Dear Mike:

Re: Changes to Terms and Conditions of the City of Parksville Water System Operating Permit

Please find enclosed an amended operating permit issued under section 8(4) of the *Drinking Water Protection Act* (the "Act"). The terms and conditions are attached as Appendix A (Operational) and Appendix B (Surface Water Treatment Objectives) and are effective March 1, 2016.

The terms and conditions, Appendix A dated April, 2009 is hereby rescinded.

In accordance to section 8(1)(b) of the Act, the water supply system must be operated in accordance with these terms and conditions. It is understood that Appendix B timeframes are target dates. Large construction projects may encounter unforeseen delays which may prohibit the completion of the project by the listed dates.

Upon completion of the water treatment plant, this proposed permit will have to be amended to reflect the new works. At that time the City of Parksville will have to request an amendment to their Operating Permit. For example, performance standards for the selected filtration technology would be listed on the Operating Permit but are not reflected in this Permit.

Please also note that water suppliers have various responsibilities under the Act and the *Drinking Water Protection Regulation* (The "Regulation"), beyond those set out as terms and conditions of the operating permit. It is your responsibility to familiarize yourself with the Act and Regulations. See section 2.2 of part A of the *Drinking Water Officer's Guide* for a summary of responsibilities and references to some of the relevant provisions of the Act and Regulation. This is intended for basic information purposes only.

If you have any questions about this operating permit, please do not hesitate to contact me at (250) 947.8222 or by email at bill.wrathall@viha.ca

Health Protection and Environmental Services 489 Alberni Highway, Parksville, BC V9P 1J9 Phone: 250-947-8222 Fax: 250-951-9576

March 1, 2016

Appendix A - Operational

Water System Operating Permit Terms and Conditions For the Current City of Parksville Water System

The permit holder is advised the following Terms and Conditions are in addition to other legislated responsibilities and obligations such as:

- The Drinking Water Protection Act, ([SBC 2001] Chapter 9
- The Drinking Water Protection Regulation (B.C. Reg. 200/2003 O.C. 508/2003)
- Adhere to monitoring requirements to ensure the efficacy of disinfection and/or treatment technology. Provide a minimum of 0.2 mg/L of residual disinfectant, measured as *free* chlorine for the water entering the system. The level of residual disinfectant at any point within the distribution system should be at least 0.05 mg/L, measured as *total* or *free* chlorine.

If detectable levels of chlorine are not observed during routine residual analysis in the distribution system, the water supplier shall obtain water samples and have them analyzed for total coliform and *Escherichia coli*, and undertake any necessary steps to return a chlorine residual as *total* and *free* chlorine.

- 2. Provide continuous on-line turbidity monitoring of raw water for the Englishman River during drawing periods (May through October or as applicable) to ensure less than or equal to 1 NTU of turbidity in finished water. Ensure the Emergency Response Plan includes appropriate action for turbidity events as detailed in the "Decision Tree for Responding to a Turbidity Event in Unfiltered Drinking Water".
- Routine surveillance and evaluation of a source water protection program and emergency response plan to identify and respond to any activity that may impact or cause changes to the source water.
- 4. Adhere to a sampling program as approved by the Drinking Water Officer and according to BCWWA standards or equivalent. Maintain records of all monitoring conducted. The sampling program is to include, but is not necessarily limited to, the following:
 - Bacteriological testing at representative locations within the distribution system.
 - Chemical testing in accordance with the Guidelines Canadian Drinking Water Quality or parameters specified in the VIHA Guidelines for Approval of Water Supply Systems,
 - Chlorine disinfectant concentration testing at representative locations within the distribution system.
- 5. Adhere to maintenance and operating procedures as approved by the Drinking Water Officer and abide by BCWWA standards or equivalent. Maintenance and operating procedures shall address but is not necessarily limited to:
 - Source water and intake protection.

March 1, 2016

Appendix B - Surface Water Treatment Objectives

Water System Operating Permit Terms and Conditions For City of Parksville Water System

The permit holder is advised the following Terms and Conditions are in addition to other legislated responsibilities and obligations such as:

- The Drinking Water Protection Act, ([SBC 2001] Chapter 9
- The Drinking Water Protection Regulation (B.C. Reg. 200/2003 O.C. 508/2003)
- Englishman River water source must be treated in accordance with the Drinking Water Treatment Objectives (Microbiological) for Surface Water Systems in British Columbia to achieve the following performance standard;
 - 4-log reduction or inactivation of viruses.
 - 3-log reduction or inactivation of Giardia and Cryptospordium.
 - Two treatment processes for surface water.
 - Less than or equal to one (1) nephelometric turbidity unit (NTU) of turbidity in finished water.

 Establish an implementation strategy towards meeting the SWTO's with a projected water treatment plant operational date by September 30, 2018. The following timeframes and critical objectives are identified;

- December 1, 2016 Submission of construction permit application(s) for the water treatment plant, intake, pump station and transmission mains.
- March 31, 2017- Construction commencement.
- June 30, 2018 Construction complete.
- July 1, 2018 Commissioning commences.
- September 30, 2018 Plant operational.

If unforeseen and/or extenuating circumstances prevent completion of the water treatment plant by September 30, 2018 the water supplier must notify the Environmental Health Officer (EHO), a minimum of 90 days in advance of the deadline, and provide rationale for the delay. Any changes to the operating permit must be approved by the EHO in writing.

- 3. Provide formal project updates by the following dates:
 - July 29, 2016.
 - January 27, 2017.
 - July 28, 2017.
 - January 31, 2018.

* Project updates may be written or in presentation format.